

24th Congress of the International Society for Forensic Genetics Vienna, Austria

Exploring the Capabilities of Mixture Interpretation Using True Allele Software

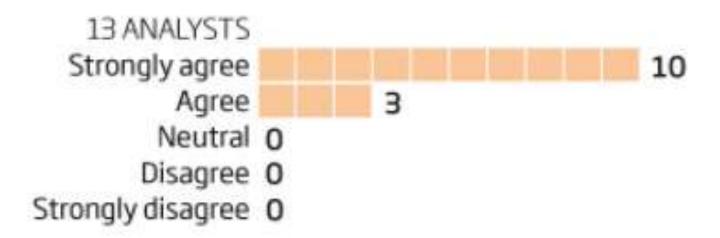
Michael D. Coble and John M. Butler
NIST Applied Genetics Group

September 3 2011

Official Disclaimer

The opinions and assertions contained herein are solely those of the author and are not to be construed as official or as views of the U.S. Department of Commerce, the U.S. Department of Justice, or the National Institute of Justice.

Commercial software, equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the U.S. Department of Commerce, the U.S. Department of Justice, or the National Institute of Justice nor does it imply that any of the software, materials, instruments or equipment identified are necessarily the best available for the purpose.



11 August 2010

Fallible DNA evidence can mean prison or freedom

http://www.newscientist.com/article/mg20727733.500-fallible-dna-evidence-can-mean-prison-or-freedom.html

Q: Lab staff need more training on how to deal with complex profiles such as mixtures and very small samples of DNA

Responses from Australia, Canada, India, New Zealand, UK, and US.

Gill and Buckleton *JFS* **55:** 265-268 (2010)

 "The purpose of the ISFG DNA commission document was to provide a way forward to demonstrate the use of probabilistic models to circumvent the requirement for a threshold and to safeguard the legitimate interests of defendants."

PAPER

J Forensic Sci, 2011 doi: 10.1111/j.1556-4029.2011.01859.x Available online at: onlinelibrary.wiley.com

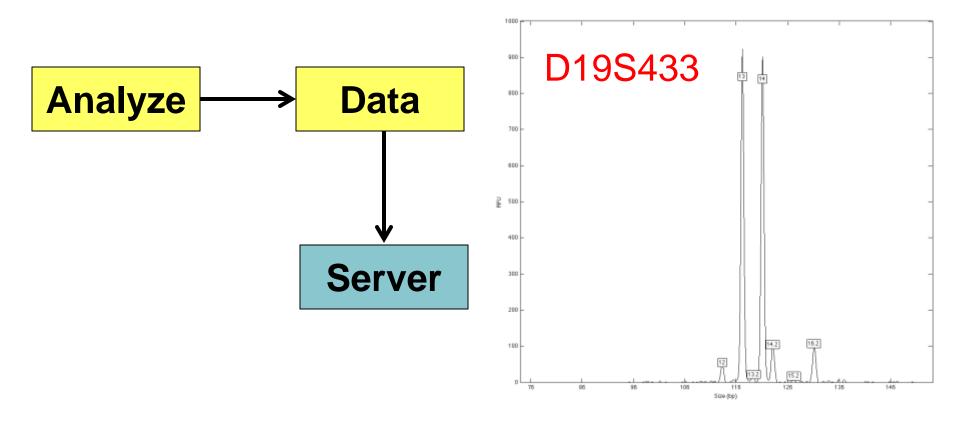
CRIMINALISTICS

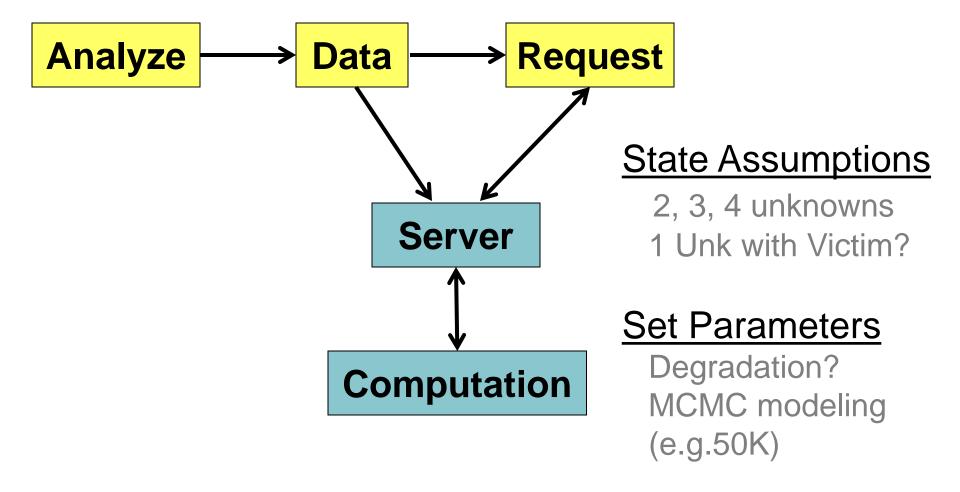
Mark W. Perlin, M.D., Ph.D.; Matthew M. Legler, B.S.; Cara E. Spencer, M.S.; Jessica L. Smith, M.S.; William P. Allan, M.S.; Jamie L. Belrose, M.S.; and Barry W. Duceman, Ph.D.

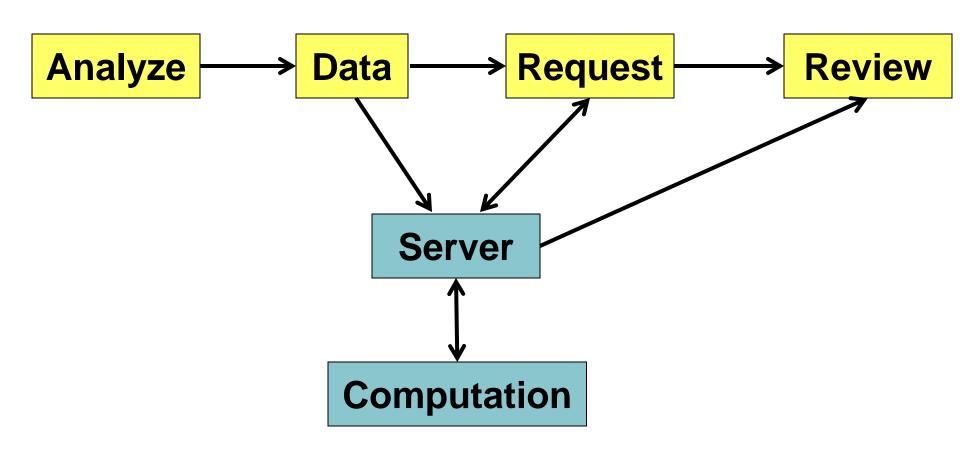
Validating TrueAllele® DNA Mixture Interpretation*,†

- Quantitative computer interpretation using Markov Chain Monte Carlo testing
- Models peak uncertainty and infers possible genotypes
- Results are presented as the Combined LR

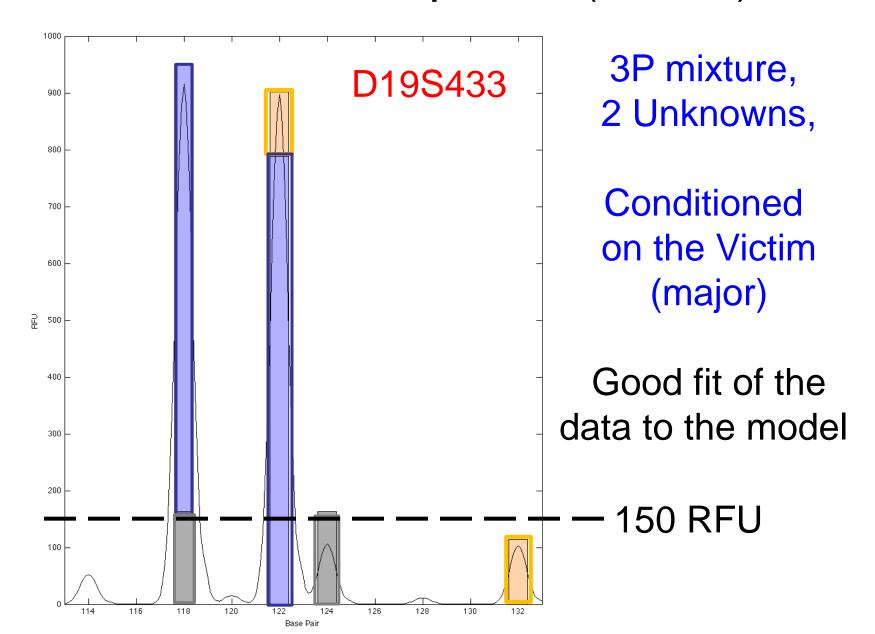
True Allele Software (Cybergenetics)

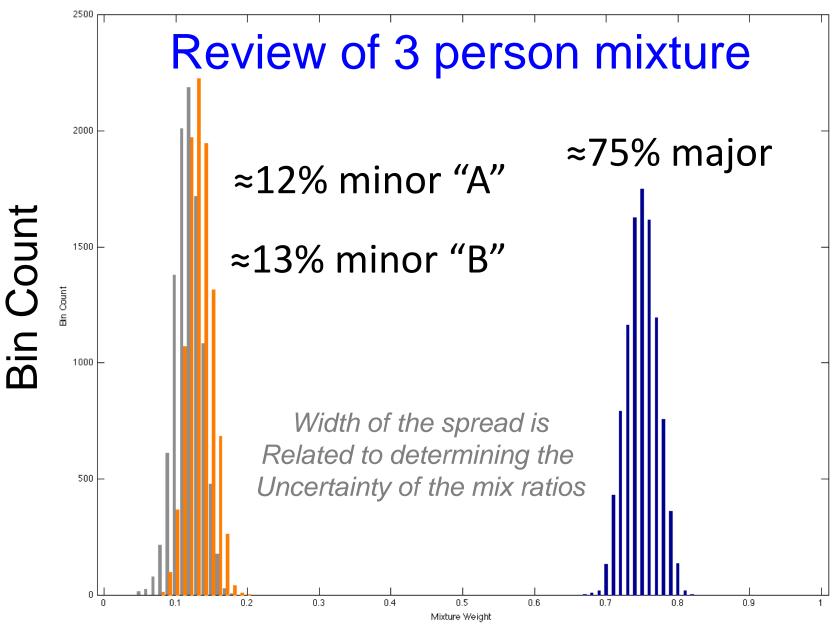

- We purchased the software in September 2010.
- Three day training at Cybergenetics (Pittsburgh, PA) in October.
- Software runs on a Linux Server with a Mac interface.

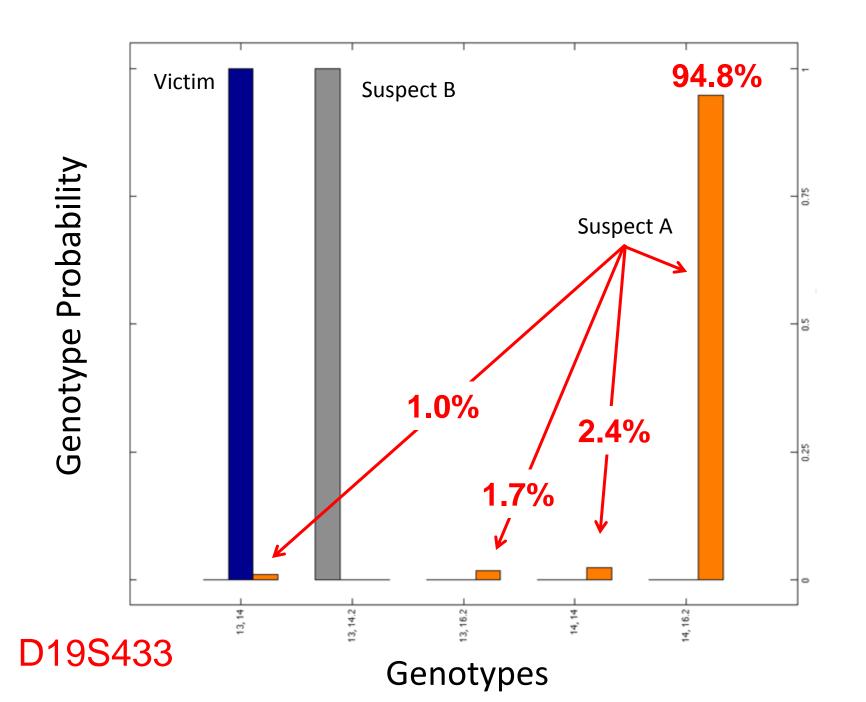


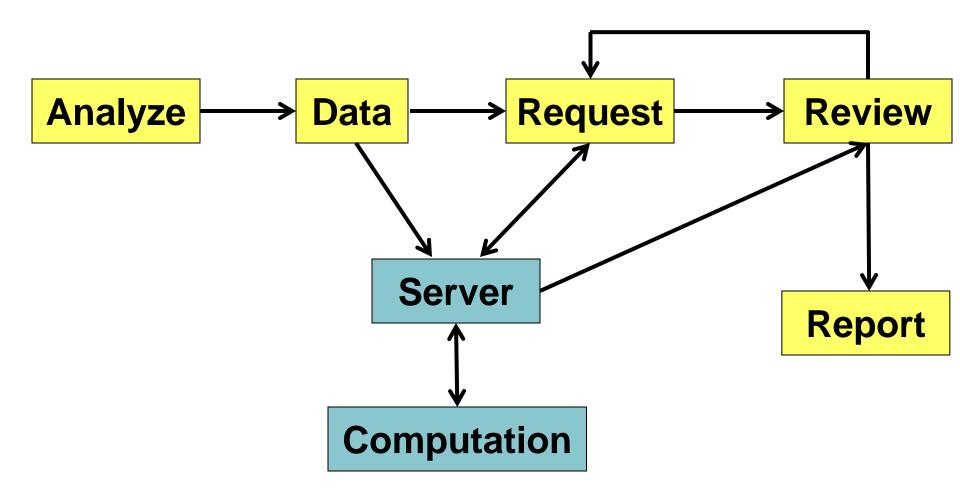

Analyze

.fsa files imported Size Standard check Allelic Ladder check Alleles are called




All Peaks above 10 RFU are considered




Review of One Replicate (of 50K)

Mixture Weight

Determining the LR for D19S433

Suspect
$$A = 14, 16.2$$

$$H_P = 1 * 0.967$$

Allele Pair

14, 16.2

14, 14

13, 16.2

13, 14

Probability
Before Conditioning

0.967

0.003

0.026

0.001

Genotype Frequency

0.0120

0.0498

0.0131

0.1082

Probability *
Genotype Freq

0.01164

0.00013

0.00034

0.00009

0.0122

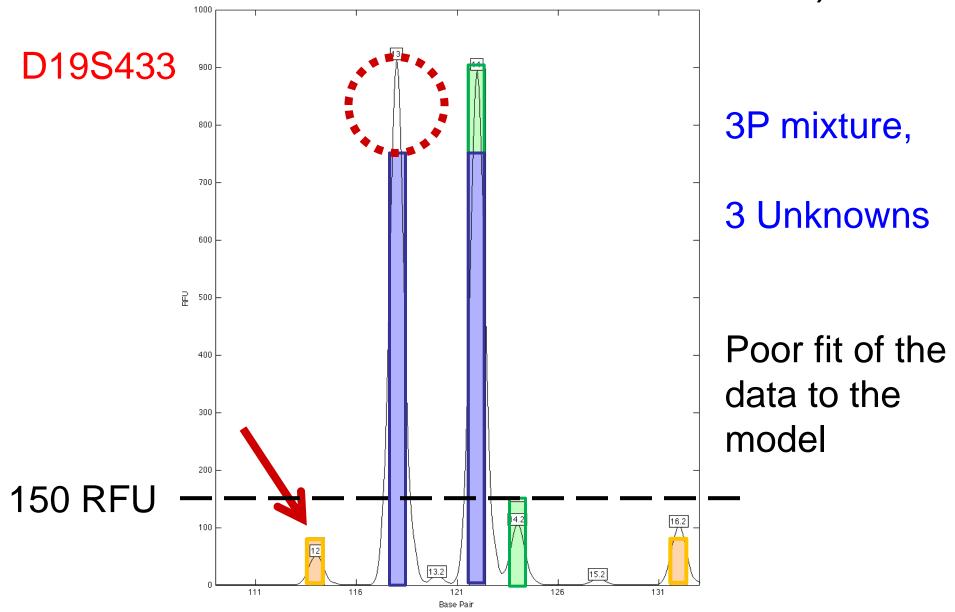
sum

 $-R = \frac{0.967}{-0.967} = 79.26$

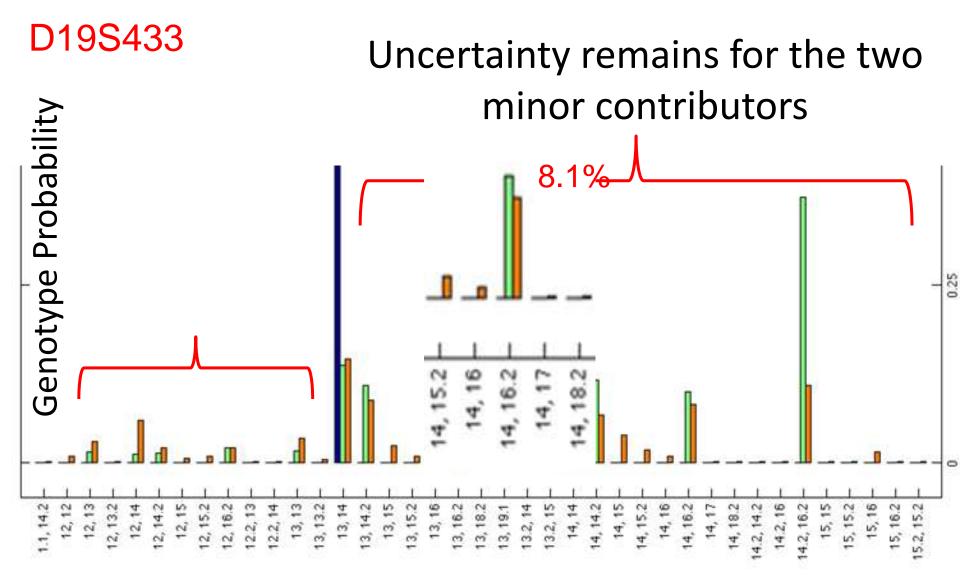
0.0122

 H_D

Combined LR = 5.6 Quintillion


			Genotype Probability Distribution			Weighted Likelihood		Likelihood Ratio	
	allele pair	Likelihood	Questioned	Reference	Suspect	Numerator	Denominator	LR	log(LR)
locus	Χ	l(x)	q(x)	r(x)	s(x)	I(x)*s(x)	I(x)*r(x)		
CSF1PO	11, 12	0.686	0.778	0.1448	1	0.68615	0.1292	5.31	0.725
D13S317	9, 12	1	1	0.0291	1	0.99952	0.02913	34.301	1.535
D16S539	9, 11	0.985	0.995	0.1238	1	0.98451	0.12188	8.036	0.905
D18S51	13, 17	0.999	1	0.0154	1	0.99915	0.01543	64.677	1.811
D19S433	14, 16.2	0.967	0.948	0.012	1	0.96715	0.01222	79.143	1.898
D21S11	28, 30	0.968	0.98	0.0872	1	0.96809	0.08648	11.194	1.049
D2S1338	23, 24	0.998	1	0.0179	1	0.99831	0.01787	55.866	1.747
D3S1358	15, 17	0.988	0.994	0.1224	1	0.98759	0.12084	8.14	0.911
D5S818	11, 11	0.451	0.394	0.0537	1	0.45103	0.07309	6.17	0.79
D7S820	11, 12	0.984	0.978	0.0356	1	0.98383	0.03617	27.198	1.435
D8S1179	13, 14	0.203	0.9	0.1293	1	0.20267	0.02993	6.771	0.831
FGA	21, 25	0.32	0.356	0.028	1	0.31986	0.01906	16.783	1.225
TH01	7, 7	0.887	0.985	0.1739	1	0.88661	0.15588	5.687	0.755
TPOX	8, 8	1	1	0.1375	1	1	0.13746	7.275	0.862
vWA	15, 20	0.998	0.996	0.0057	1	0.99808	0.00569	174.834	2.243

Results


Results are expressed as logLR values

LR = 1,000,000 =
$$10^6$$

 $log(LR) = log10^6$
 $log(LR) = 6 * log10 (1)$
 $log(LR) = 6$

Review of One Replicate (of 50K)

No Conditioning (3 Unknowns)

Genotypes

locus	allele pair	L	Q	R	S	L*S	L*R	LR	log(Li
0195433	12 14	0.002	0.146	0.1082			0.00020		
193433	13 , 14								
	14.2, 16.2	0.270	0.109	0.0044			0.00118		
	14 , 14	0.002	0.093	0.0498			0.00008		
	13 , 14.2	0.017	0.088	0.0392		0.01305	0.00068		
	14 , 16.2	0.013	0.081	0.0120	1	0.01295			
	13 , 16.2	0.018	0.074	0.0131			0.00023		
	14 , 14.2	0.009		0.0361			0.00031		
	12 , 14	0.002	0.059	0.0498			0.00012		
	14 , 15	0.001	0.038	0.0343			0.00002		
	13 , 13	0.001	0.034	0.0587			0.00007		
	12 , 13	0.002	0.029	0.0541			0.00010		
	13 , 15	0.001	0.024	0.0373			0.00002		
	12 , 16.2	0.017	0.021	0.0060			0.00010		
	12 , 14.2	0.013	0.020	0.0180			0.00023		
	14 , 15.2	0.001	0.018	0.0275			0.00003		
	15 , 16	0.002	0.015	0.0006			0.00000		
	13 , 15.2	0.001	0.009	0.0299			0.00003		
	12 , 15.2	0.003	0.009	0.0137			0.00004		
	14 , 16	0.000	0.009	0.0017			0.00000		
		0.004	0.009	0.0125			0.00004		
	12 , 15	0.001	0.006	0.0172			0.00001		
	13 , 16	0.000	0.006	0.0019			0.00000		
	13 , 13.2	0.001	0.004	0.0261			0.00003		
	13.2, 14	0.001	0.003	0.0240			0.00002		
	13.2, 15	0.001	0.002	0.0083			0.00001		
	14 , 18.2	0.002	0.002	0.0017			0.00000		
	13 , 19.1	0.019	0.002	0.0000			0.00000		
	12 , 13.2	0.002	0.002	0.0120			0.00003		
	14.2, 16	0.001	0.002	0.0006			0.00000		
	12.2, 13		0.002	0.0168			0.00002		
	13 , 18.2	0.002	0.001	0.0019			0.00000		
	12.2, 14	0.001	0.001	0.0155			0.00001		
	14.2, 14.2	0.004	0.001	0.0065			0.00003		
	15 , 15		0.001	0.0059			0.00000		
	15 , 15.2	0.000	0.001	0.0095			0.00000		
	14 , 17	0.001	0.001	0.0000			0.00000		
	15 , 16.2	0.000	0.001	0.0042			0.00000		
	15.2, 15.2	0.001	0.001	0.0038			0.00000		
	1.1, 14.2	0.072	0.001	0.0097			0.00069		
	1.1, 17.2	0.012	0.001	0.0051		0.01295	0.00385	3.367	0.527

Suspect "A" Genotype

39 probable genotypes

D19S433

Suspect A = 14, 16.2

$$H_P = 1 * 0.013$$

= 3.38

		Genotype		
Allele Pair	Probability	Frequency		
13,14	0.002	0.1082		
14.2, 16.2	0.270	0.0044		
14, 14	0.002	0.0498		
13, 14.2	0.017	0.0392		
14, 16.2	0.013	0.0120		
13, 16.2	0.018	0.0131		
etc	etc	etc		
	0.013	3	Sum	

0.00385

Prob *

GenFreq

0.00020

0.00118

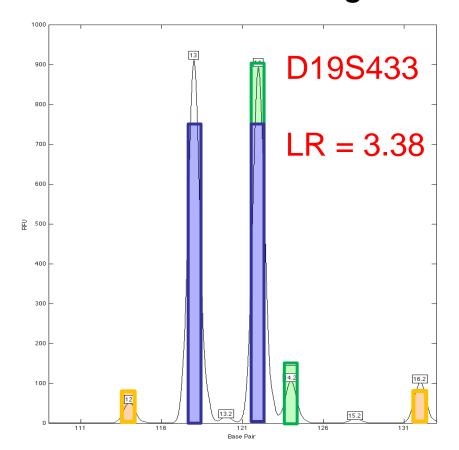
0.00008

0.00068

0.00016

0.00023

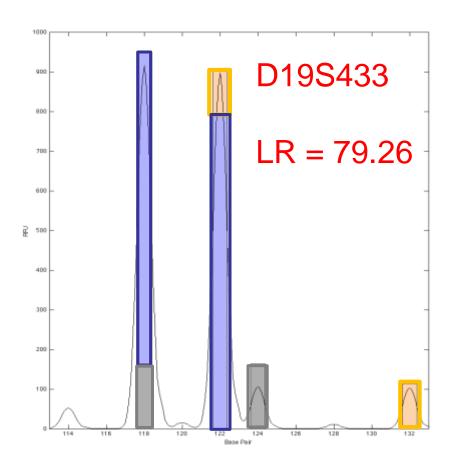
etc...


0.00385

 H_D

D19S433

No Conditioning (3 Unknowns)


No Conditioning

Profile - Combined log(LR)

Suspect A log(LR) = 8.03Suspect B log(LR) = 7.84

Conditioned on Victim

Profile - Combined log(LR)

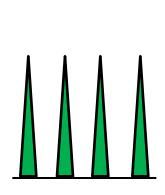
Suspect A log(LR) = 18.72

Suspect B log(LR) = 19.45

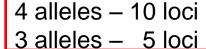
Exploring the Capabilities

Degree of Allele Sharing

Mixture Ratios

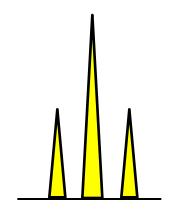

DNA Quantity

Mixture Data Set

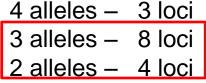

- Mixtures of pristine male and female DNA amplified at a total concentration of 1.0 ng/μL using Identifiler (standard conditions).
- Mixture ratios ranged from 90:10, 80:20, 70:30 60:40, 50:50, 40:60, 30:70, 20:80, and 10:90
- Each sample was amplified twice.

Mixture Data Set

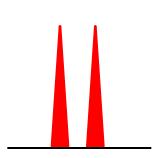
Three different combinations:



"Low" Sharing



2 alleles - 0 loci

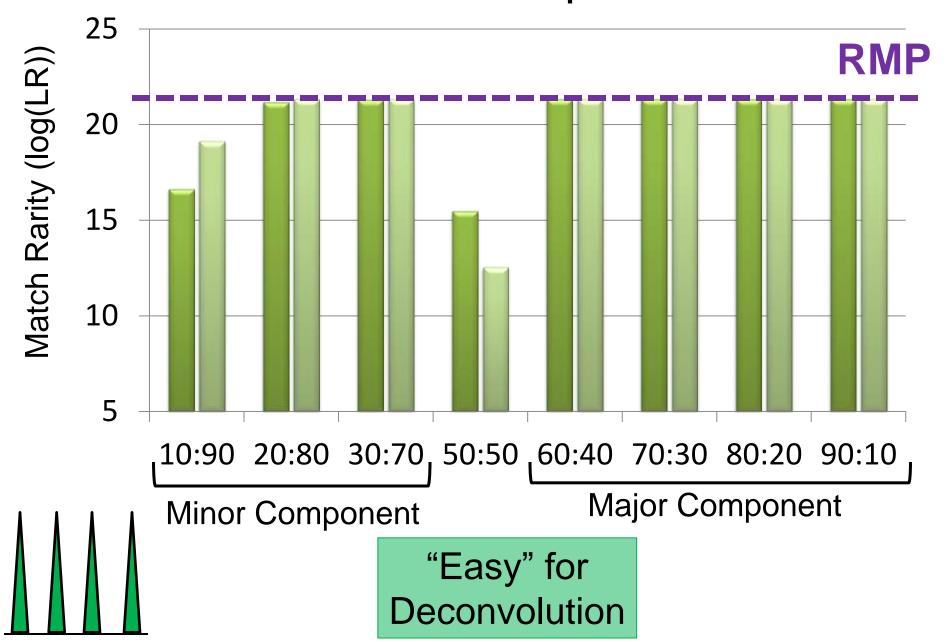

1 allele - 0 loci

"Medium" Sharing

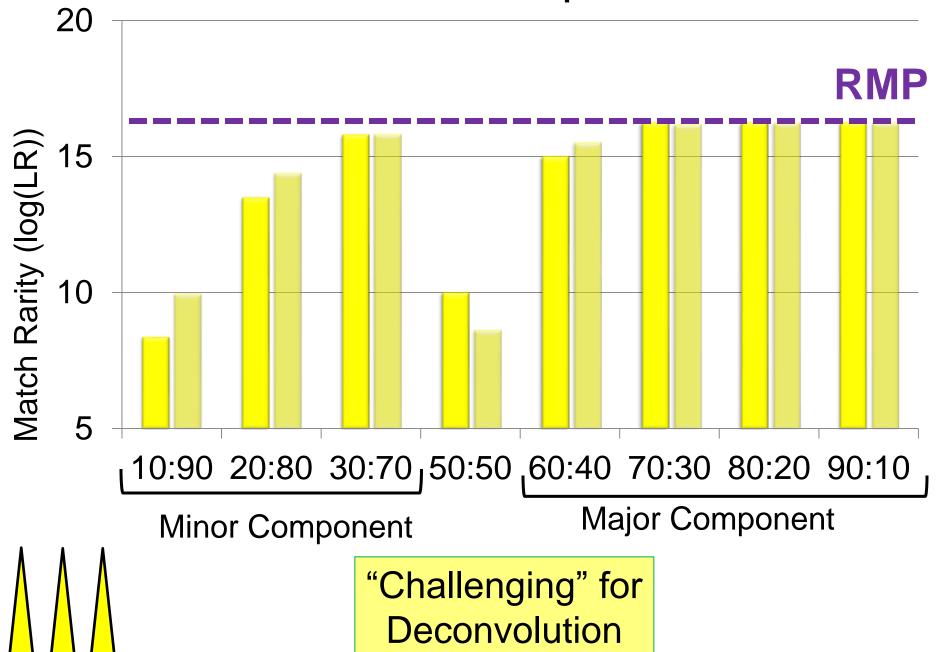
1 allele – 0 loci

"High" Sharing

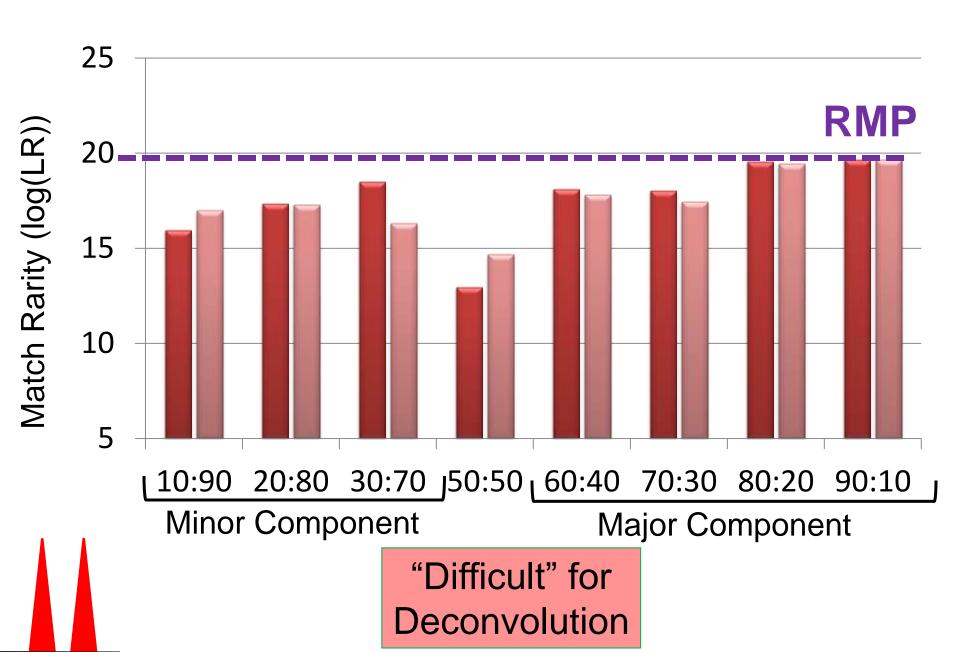
4 alleles - 0 loci

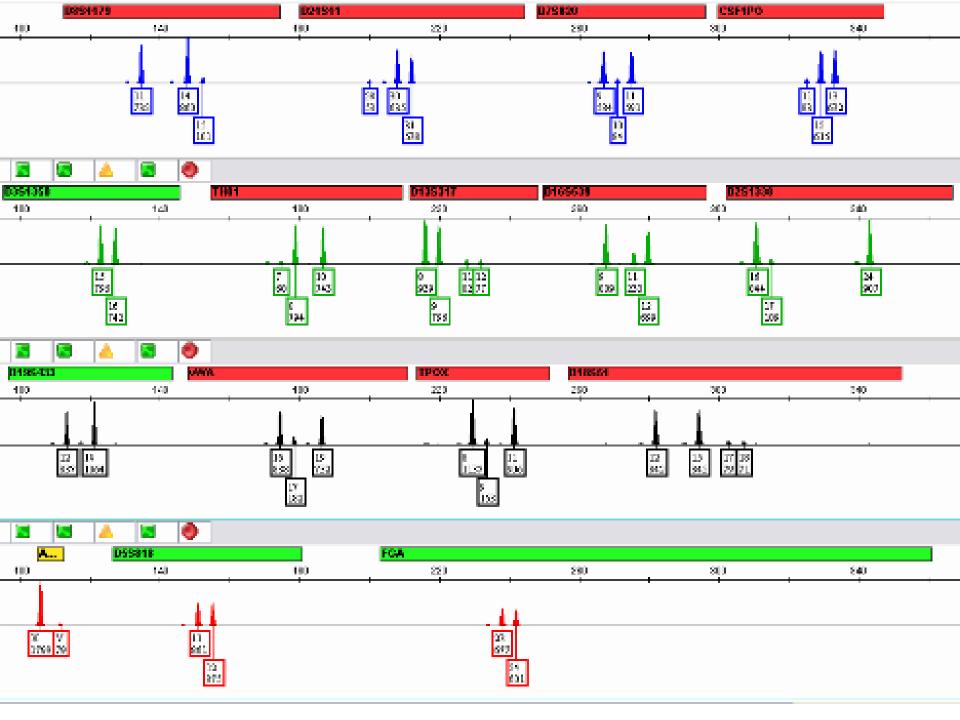

3 alleles – 6 loci

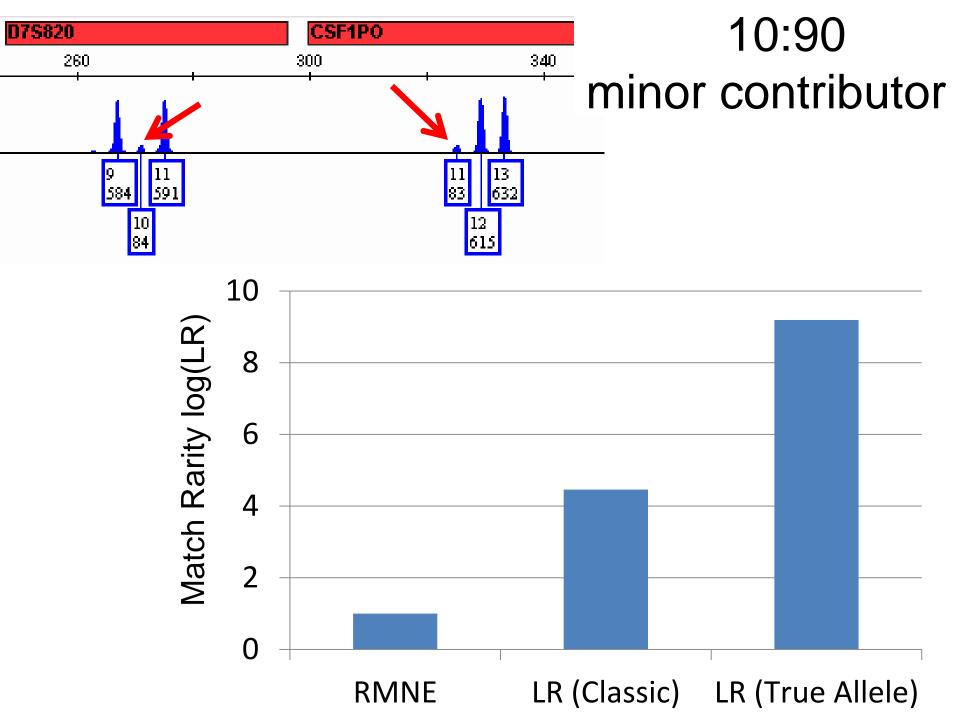
2 alleles - 8 loci


1 allele – 1 loci

Virtual MixtureMaker - http://www.cstl.nist.gov/strbase/software.htm

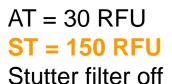

Match Score in Duplicate Runs

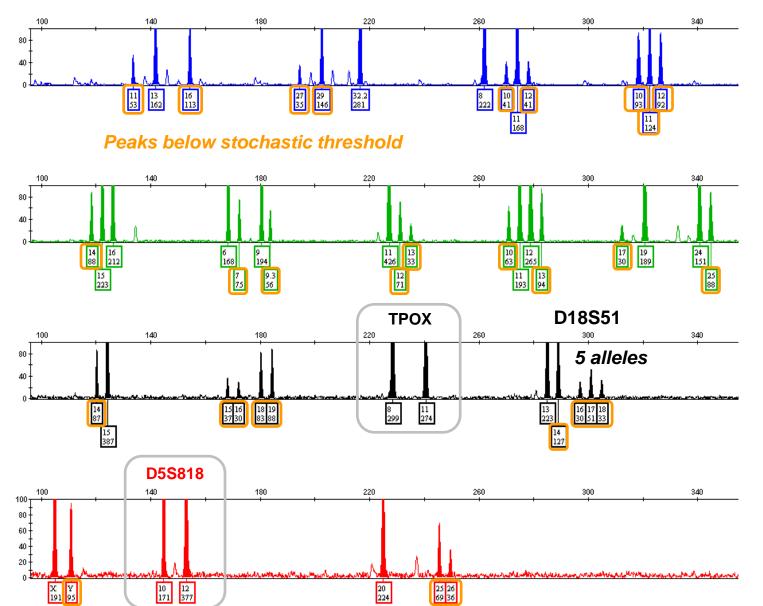



Match Score in Duplicate Runs

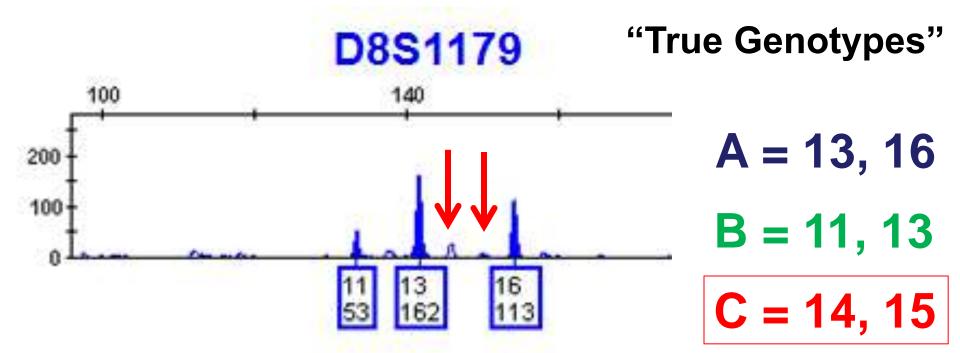
Match Score in Duplicate Runs

Exploring the Capabilities


Degree of Allele Sharing


Mixture Ratios

DNA Quantity


Identifiler

125 pg total DNA

y-axis zoom to 100 RFU

3 person Mixture – No Conditioning Major Contributor ≈ 83 pg input DNA 2 Minor Contributors ≈ 21 pg input DNA

The Power of Conditioning

	LR (no conditioning, 3unk)
Contributor A	1.21 Quintillion
Contributor B (victim)	1.43 Million
Contributor C	9.16 Thousand

	LR (conditioned on victim + 2unk)
Contributor A	1.32 Quintillion
Contributor B (victim)	2.19 Million
Contributor C	59.8 Thousand

Ranged from 1.13 to 800K

Summary

 True Allele utilizes probabilistic genotyping and makes better use of the data than the RMNE approach.

 However, the software is computer intensive. On our 4 processor system, it can take 12-16 hours to run up to four mixture samples.

Summary

 Allele Sharing: Stacking of alleles due to sharing creates more uncertainty.

 Mixture Ratio: With "distance" between the two contributors, there is greater certainty.
 Generally, True Allele performs better than RMNE and the classic LR with low level contributors.

Summary

- DNA Quantity: Generally, with high DNA signal, replicates runs on True Allele are very reproducible.
- However, with low DNA signal, higher levels of uncertainty are observed (as expected).
- There is a need to determine an appropriate threshold for an inclusion log(LR).

Future Work

 More work will be performed with low level, complex (3 and 4 person) mixtures.

Thank You!

Forensic DNA Team

John Butler

Mike Coble

Becky Hill

Margaret Kline

Data Analysis Support

Dave Duewer

DNA Biometrics Team

Pete Vallone

Erica Butts

Kristen Lewis
O'Connor

Funding from the **National Institute of Justice (NIJ)** through NIST Office of Law Enforcement Standards

Funding from the **FBI S&T Branch** through NIST Information Access Division

Cybergenetics – Dr. Mark Perlin, Dr. Ria David, Bill Allan, Matt Legler, and Erin Turo