NIST Validation Studies on the 3500 Genetic Analyzer

Erica L.R. Butts
U.S. National Institute of Standards and Technology

24th Congress of the International Society for Forensic Genetics
Vienna, Austria
August 31, 2011
Outline

• Details of the ABI 3500 Genetic Analyzer

• Validation design and results with Identifiler and Identifiler Plus
 – Injection parameters and reaction setup
 – Precision and size standard comparison
 – Concordance and mixture evaluation

• Methodology of setting analytical and stochastic thresholds
Details of the ABI 3500

- No lower pump block (Fewer air bubbles)
- Improved sealing for better temperature control
- Reagents prepackaged with RFID tags
- Improved seal around the detector

8-capillary instrument at NIST
Primary Differences

<table>
<thead>
<tr>
<th></th>
<th>31xx Platforms</th>
<th>3500 Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser</td>
<td>Argon ion (AR+) with 488/514 nm wavelength</td>
<td>Single-line 505 nm, solid-state, long-life laser</td>
</tr>
<tr>
<td>Power Requirement</td>
<td>220V</td>
<td>110V</td>
</tr>
<tr>
<td>File Generated</td>
<td>.fsa files</td>
<td>.hid files</td>
</tr>
<tr>
<td>Normalization</td>
<td>None</td>
<td>Instrument-to-instrument; only with AB kits</td>
</tr>
<tr>
<td>Optimal Signal Intensity</td>
<td>1500-3000 RFU</td>
<td>4x greater than 31xx platforms</td>
</tr>
</tbody>
</table>
What is Validation?

Section 1.1 (SWGDAM Revised Validation Guidelines) Validation is the process by which the scientific community acquires the necessary information to:

(a) Assess the ability of a procedure to obtain reliable results.

(b) Determine the conditions under which such results can be obtained.

(c) Define the limitations of the procedure.

The validation process identifies aspects of a procedure that are critical and must be carefully controlled and monitored.

Reliability, Reproducibility, Robustness

SWGDAM: FBI Laboratory’s Scientific Working Group on DNA Analysis Methods
Experimental Summary

<table>
<thead>
<tr>
<th>Test</th>
<th>Types of Samples Used</th>
<th>Number Examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Standard Comparison</td>
<td>16 Allelic Ladders per size standard (LIZ 500 vs. LIZ 600 v2.0)</td>
<td>32</td>
</tr>
<tr>
<td>Injection Parameters</td>
<td>3 samples heterozygous at 15 loci plus Amelogenin 1 ng DNA input</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 samples per injection</td>
</tr>
<tr>
<td>Precision</td>
<td>Allelic Ladders</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3 samples heterozygous at all 15 loci plus Amelogenin</td>
<td>6</td>
</tr>
<tr>
<td>Concordance</td>
<td>50 genomic DNA samples</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>SRM 2391b: 10 genomic DNA samples</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Dilution series of 3 samples heterozygous at 15 loci plus Amelogenin</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 replicates of each dilution series</td>
</tr>
<tr>
<td>Mixtures</td>
<td>Mixture dilution series of 2 samples heterozygous at 15 loci plus Amelogenin</td>
<td>28</td>
</tr>
<tr>
<td>Total Number of Samples</td>
<td></td>
<td>249</td>
</tr>
</tbody>
</table>

Identical experiments for **Identifiler** and **Identifiler Plus**
Injection parameters set for \(\frac{1}{2} \) PCR reactions at 28 cycles:
- Default: 1.2 kV for 15 s
- Identifiler: 1.2 kV for 7 s
- Identifiler Plus: 1.2 kV for 5 s

No significant difference between the LIZ500 and LIZ600 v2.0 size standards.
Validation Results: Reproducibility

• 60 samples concordant between 3130x/ and 3500
 – Total of 1689 alleles examined

• Precision of base pair sizing ±0.05 bp between allelic ladders and samples tested
 – No significant difference between the 3130x/ and 3500
 – No significant difference between Identifiler and Identifiler Plus
Validation Results: Robustness

• Minor component identified correctly in a 1:10 mixture ratio

• Sensitivity data examined to set analytical and stochastic thresholds
 – Full (correct) profiles observed from 1.0 ng to 100 pg
Different Threshold Overview

Example values
(empirically determined based on own internal validation)

350 RFUs

 Called Peak
(Greater confidence a sister allele has not dropped out)

150 RFUs

 Called Peak
(Cannot be confident dropout of a sister allele did not occur)

Peak not considered reliable

Stochastic Threshold
The value above which it is reasonable to assume that allelic dropout of a sister allele has not occurred

Analytical Threshold
Minimum threshold for data comparison and peak detection in the DNA typing process

Noise

Analytical Threshold Methodology

• Baseline noise values calculated with data from the sensitivity study (DNA dilution series)
 – Threshold set at 1 RFU for all dye channels
 – Remove calls for all alleles and artifacts (stutter, n+4, pull-up, etc.)

• 4 methods to evaluate analytical thresholds calculated

• **Analytical Threshold**: Average RFU + (10 x Standard Deviation)
Different Thresholds

Single thresholds for all dye channels assumes all dye channels have the same amount of noise.

Dye-specific thresholds take into consideration that all dye channels do not have the same level of noise.

Can increase the amount of data that is callable.
n=84 samples

Analytical Threshold Calculation

<table>
<thead>
<tr>
<th>Dye Channel</th>
<th>Average RFU</th>
<th>Stdev</th>
<th>Min RFU</th>
<th>Max RFU</th>
<th>Calculated Noise (RFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>9</td>
<td>8.4</td>
<td>1</td>
<td>66</td>
<td>93</td>
</tr>
<tr>
<td>Green</td>
<td>13</td>
<td>11.5</td>
<td>3</td>
<td>84</td>
<td>128</td>
</tr>
<tr>
<td>Yellow</td>
<td>22</td>
<td>11.6</td>
<td>4</td>
<td>88</td>
<td>138</td>
</tr>
<tr>
<td>Red</td>
<td>28</td>
<td>8.8</td>
<td>10</td>
<td>80</td>
<td>116</td>
</tr>
</tbody>
</table>

Identity Plus

<table>
<thead>
<tr>
<th>Dye Channel</th>
<th>Average RFU</th>
<th>Stdev</th>
<th>Min RFU</th>
<th>Max RFU</th>
<th>Calculated Noise (RFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>10</td>
<td>4.6</td>
<td>3</td>
<td>68</td>
<td>55</td>
</tr>
<tr>
<td>Green</td>
<td>16</td>
<td>5.6</td>
<td>3</td>
<td>78</td>
<td>72</td>
</tr>
<tr>
<td>Yellow</td>
<td>24</td>
<td>7.9</td>
<td>7</td>
<td>63</td>
<td>103</td>
</tr>
<tr>
<td>Red</td>
<td>31</td>
<td>8.9</td>
<td>7</td>
<td>81</td>
<td>120</td>
</tr>
</tbody>
</table>

- Statistical difference was calculated between dye channels using a z-test
- Statistically each dye channel is different for both `Identifier` and `Identifier Plus`
 - Must be treated independently
n=560 alleles

Threshold Comparison

Total of 560 alleles examined (50 pg, 30 pg, and 10 pg) where dropout was observed

14.8% of the total possible allele calls were lost using a single threshold rather than using dye-specific thresholds with **Identifiler**

22.0% of the total possible allele calls were lost using a single threshold rather than using dye-specific thresholds with **Identifiler Plus**
Setting Stochastic Methodology

- Analyzed data from the sensitivity study (DNA dilution series) analyzed with dye specific analytical thresholds.

- Examined sample amounts where dropout was observed (50 pg, 30 pg, 10 pg for Identifiler and Identifiler Plus).
 - Used to examine stochastic effects including severe imbalance of heterozygous alleles and allele dropout.

- **Stochastic Threshold**: The RFU value of highest surviving false homozygous peak per dye channel.
n=84 samples

Summary of Thresholds

Identifier: 7 sec @ 1.2 kV (28 cycles)

<table>
<thead>
<tr>
<th></th>
<th>AT (RFU)</th>
<th>Highest Surviving Peak (RFU)</th>
<th>ST (RFU)</th>
<th>Lowest Expected PHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>95</td>
<td>344</td>
<td>345</td>
<td>28%</td>
</tr>
<tr>
<td>Green</td>
<td>130</td>
<td>435</td>
<td>435</td>
<td>30%</td>
</tr>
<tr>
<td>Yellow</td>
<td>140</td>
<td>409</td>
<td>410</td>
<td>34%</td>
</tr>
<tr>
<td>Red</td>
<td>120</td>
<td>309</td>
<td>310</td>
<td>39%</td>
</tr>
</tbody>
</table>

Identifier Plus: 5 sec @ 1.2 kV (28 cycles)

<table>
<thead>
<tr>
<th></th>
<th>AT (RFU)</th>
<th>Highest Surviving Peak (RFU)</th>
<th>ST (RFU)</th>
<th>Lowest Expected PHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>55</td>
<td>288</td>
<td>290</td>
<td>19%</td>
</tr>
<tr>
<td>Green</td>
<td>75</td>
<td>383</td>
<td>385</td>
<td>19%</td>
</tr>
<tr>
<td>Yellow</td>
<td>105</td>
<td>414</td>
<td>415</td>
<td>25%</td>
</tr>
<tr>
<td>Red</td>
<td>120</td>
<td>265</td>
<td>265</td>
<td>45%</td>
</tr>
</tbody>
</table>

Both AT and ST values rounded to the nearest 5 RFU value.

Expected peak height ratio (PHR) is assuming the possibility of having one peak at the AT and one peak at the ST.

Expected PHR = AT/ST.
Consumable RFID Tracking Limits

<table>
<thead>
<tr>
<th>RFID Hard Stops</th>
<th>Usage Comments From a Research Laboratory Standpoint</th>
</tr>
</thead>
</table>
| **Array** | 1. Very easy to change between HID and sequencing
| None | 2. Array from validation was stored at least twice and reinstalled on 3500 during validation |
| **Buffer** | 1. Can no longer use in-house buffer
| Expiration Date | 2. Very easy to change on the instrument (snap-and-go) |
| 7 Days on Instrument # Injections | |
| **Polymer** | 1. Hard stop with the expiration date has caused us to discard unused polymer we would have otherwise kept on the instrument
| Expiration Date | 2. ~50% of total polymer remains in the pouch after “consumption”
| # Samples # Injections | 3. Expiration dates have changed purchasing strategy (smaller batches, based on ongoing project needs) |
Validation Conclusions

- The 3500 has proven to be reliable, reproducible and robust
 - Out of 498 samples between Identifiler and Identifiler Plus only 5 required reinjection

- Dye specific analytical thresholds resulted in less allelic and full locus dropout than applying one analytical threshold to all dyes

- Stochastic thresholds are linked to analytical thresholds
 - If the analytical threshold is adjusted, the stochastic threshold should be reevaluated along with expected peak height ratios
 - Requires consideration for overall interpretation workflow which we are still evaluating

- RFID tracking decreases flexibility in our research experience
Acknowledgments

Forensic DNA Team
- John Butler
- Mike Coble
- Becky Hill
- Margaret Kline

Data Analysis Support
- Dave Duewer

DNA Biometrics Team
- Pete Vallone
- Kristen Lewis O’Connor

Funding from the National Institute of Justice (NIJ) through NIST Office of Law Enforcement Standards

Funding from the FBI Biometrics Center of Excellence ‘Forensic DNA Typing as a Biometric Tool’

Contact Info:
- erica.butts@nist.gov
- +1-301-975-5107