Validation Principles, Practices, Parameters, Performance Evaluations, and Protocols

John M. Butler and Hari K. Iyer
National Institute of Standards and Technology
Points of view are those of the presenter and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Identification does not imply endorsement
Certain commercial entities are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the entities identified are necessarily the best available for the purpose.
Acknowledgments

I acknowledge many meaningful discussions on validation over the years with Dave Duewer, Margaret Kline, Robin Cotton, Catherine Grgicak, and Charlotte Word.

I appreciate input from four practitioners (Teresa Cheromcha, Kristy Kadash, Kate Philpott, and Janel Smith) on ideas of what would be helpful in this workshop.

I appreciate input on our DNA mixture interpretation scientific foundation review from Rich Cavanagh, Mike Coble, Katherine Gettings, Hari Iyer, John Paul Jones, Willie May, Niki Osborne, Rich Press, Robert Ramotowski, Sarah Riman, Shyam Sunder, Melissa Taylor, Pete Vallone, and Sheila Willis – and a 13-member DNA Mixture Resource Group (met with the NIST team 12 times from Dec 2017 to June 2019).

This work is Congressionally-funded through the NIST Special Programs Office.
Workshop Outline

<table>
<thead>
<tr>
<th>Topics</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1: Introduction, Guidance Documents, and Terminology</td>
<td>John</td>
</tr>
<tr>
<td>Module 2: Reliability Assessment of LR Systems: General Concepts</td>
<td>Hari</td>
</tr>
<tr>
<td>BREAK</td>
<td>---</td>
</tr>
<tr>
<td>Module 3: Validation Plans and Experimental Design</td>
<td>John</td>
</tr>
<tr>
<td>Module 4: Reliability Assessment of LR Systems: Data Examples</td>
<td>Hari</td>
</tr>
<tr>
<td>Module 5: Summarizing, Using, and Communicating Validation Data</td>
<td>John</td>
</tr>
</tbody>
</table>

A Live Q&A is Planned After Each Module
Validation Principles, Practices, Parameters, Performance Evaluations, and Protocols

Introduction, Guidance Documents, & Terminology

Module 1

John M. Butler
National Institute of Standards and Technology
Module 1 (John)

• Introduction
 • Why this workshop? Why now?
 • Our previous experience
 • Input received for this workshop

• Available Guidance Documents on Validation
 • FBI QAS & SWGDAM
 • Other groups: OSAC/ASB, ANAB, ISO, ILAC-G19, ISFG, UKFSR, NIFS, ENFSI

• Terminology
 • Validation & internal validation
 • Issues with “validated” (when used in a binary sense)
 • Reliability (to be covered by Hari in Module 2)
Introduction
My Interest in Validation Grew at ISHI 16 Years Ago

STRBase Site: https://strbase.nist.gov/validation.htm

September 2006 Profiles in DNA 9(2), 3-6
My Comments on My Urban Legends

“Treating validation as a one-time event that is performed by a single individual (perhaps a summer intern who leaves the lab after performing the measurements) can lead to problems. Every analyst that is interpreting DNA typing data should be familiar with and understand the validation studies that hopefully underpin the laboratory’s standard operating procedures. Validation defines the scope of a technique and thus its limitations. Making measurements around the edges of what works well will help better define the reliable boundaries of the technique. While developmental validation may be broadly applicable, internal validation is not transferrable in the same way.”

“The performance characteristics and limitations of an instrument, a software program, and a DNA typing assay are important to understand in order to effectively interpret forensic DNA data.”
Validation Information to Aid Forensic DNA Laboratories

[Presentation at Promega 2004 meeting] [Promega 2004 meeting publication] [Questionnaire used]

President's DNA Initiative Validation Workshop Materials for workshop held at NFSTC August 24-26, 2005

Validation Workshop (208 slides) presented for Applied Biosystems' HID University/Future Trends in Forensic DNA Technology in Albany, NY, May 10, 2006

To provide information or suggest improvements to this section of STRBase, please contact John Butler <john.butler@nist.gov>.

[Explanation of Validation] [Standards/Guidelines] [Validation Summary Sheets] [Internal Validation Studies] [Helpful Information] [Literature Summary]

This website was initially created to support the 2004 SWGDAM Revised Validation Guidelines (the website is out of date and needs updating)
My Motivation for Doing This Validation Workshop

1. **Growth and changes in the field in the past 15 years**
 - My Urban Legends article needs revamping (I have seen it misused to oversimplify the purpose and process of validation)
 - Study of terminology as part of OSAC and NIST scientific foundation reviews
 - NIST is planning a workshop *Validation in Forensic Science* for June 2021

2. **Review of literature on DNA mixture interpretation and PGS**
 - Need for more information to help forensic DNA analysts and TLs strengthen their work
 - Desire to have information available for review to assess the degree of reliability of PGS systems – defense challenges and admissibility hearings have increased in recent years

3. **Chapters in new DNA books sparked interest in revisiting validation**
 - Bright & Coble (2020) Chapter 8 “Considerations on Validation of Probabilistic Genotyping Software”
 - Gill et al. (2020) Chapter 9 “Validation”
Previous Workshops/Webinars on Validation (1)

1. Workshop filmed at NFSTC (Aug 24-26, 2005) with Robyn Ragsdale
 • https://strbase.nist.gov/validation/validationworkshop.htm

2. AAFS 2006 (Feb 20, 2006) and Massachusetts State Police Crime Laboratory (Apr 27-28, 2006) with Bruce McCord

3. HID University (May 10, 2006)

4. New Jersey State Police (Dec 5-6, 2006)

5. Pennsylvania State Police (June 5, 2007)

7. Webinar for Legal Medical Service in Santiago, Chile (Aug 26, 2008)

Created STRBase Validation Page: https://strbase.nist.gov/validation.htm
Previous Workshops/Webinars on Validation (2)

8. ISHI 2007 Workshop (Validation: What Is It, Why Does It Matter, and How Should It Be Done?)
9. ISHI 2009 Workshop
10. Florida International University with Bruce McCord (July 20-24, 2009)
11. ISFG Workshop with Pete Vallone (Sept 15, 2009)

CODIS Core Loci Working Group & FBI Consortium Validation Project (2010-2012)
12. NIST Mixture Webinar (April 12, 2013)
 • https://strbase.nist.gov/training/MixtureWebcast/9_LowTemplateValidation-Butler.pdf
13. NIST DNA Analyst Webinar (Aug 6, 2014)
14. ISHI 2014 Workshop (Oct 2, 2014)
15. ISHI 2019 Workshop with Charlotte Word (Sept 23, 2019)
 • https://strbase.nist.gov/pub_pres/ISHI2019workshop-EvaluatingPublishedData.pdf

Cited in Gissantaner Amicus 2020 brief
Previous Workshops/Webinars on Validation (3)

 • Hari Iyer presentation on “Rule of 3 and Rule of 30” regarding experimental design

17. ISHI 2019 Mixture Workshop (Sept 26, 2019)
 • Hari Iyer presentation on reliability considerations and PGS LR validation

ISO/IEC 19795-1:

Sufficient samples shall be collected per test subject so that the total number of attempts exceeds that required by the Rule of 3 or Rule of 30 as appropriate

- What is the RULE OF 3 and how is it applied when determining sample sizes?
- What is the RULE OF 30 and how is it applied when determining sample sizes?

Hari K. Iyer
NIST Statistical Engineering Division
Some Specific Input Received for This Workshop

- **Teresa Cheromcha** (Colorado Bureau of Investigation-Grand Junction)
 - Assistant TL for CBI system with 5 laboratories
- **Kristy Kadash** (Jefferson County Regional Crime Laboratory, Colorado)
 - Member of SWGDAM and OSAC and former TL
- **Kate Philpott** (Adjunct Faculty/Research Analyst, VCU Forensic Science Program)
 - Legal and scientific consultant; recently co-authored the June 2020 *Gissantaner* amicus brief
- **Janel Smith** (Phoenix Police Department)
 - DNA Technical Leader for a large city laboratory; member of OSAC

I reached out to each of them and asked for ideas of things we should cover to best assist DNA analysts and TLs and specifically what information on the topic of validation would be most helpful to them in their work
Many Laboratory Activities Need Validation

- DNA Extraction Robotic Process
- Quantitation Kits or Assays
- New STR Kits
- CE Instruments
- Genotyping Software
- Rapid DNA Instrument
- NGS Instrument
- Probabilistic Genotyping Software (PGS)
Guidance Documents

Hyperlinks to Each Document Are Included in the PDF Version of These Presentation Slides
Documents that Govern and Influence DNA Operations in Accredited Forensic Laboratories

<table>
<thead>
<tr>
<th>Document</th>
<th>Authority</th>
<th>Who Creates</th>
<th>Who Uses or Enforces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Assurance Standards (QAS)</td>
<td>Law passed by Congress in 1994; issued by FBI Director</td>
<td>Originally DAB (1995-2000), now SWGDAM</td>
<td>FBI and ANAB auditors to assess U.S. forensic laboratories</td>
</tr>
<tr>
<td>Guidelines & Best Practices</td>
<td>Forensic practitioner community</td>
<td>SWGDAM, ENFSI DNA WG, ISFG DNA Commission</td>
<td>Forensic laboratories and practitioners (not required)</td>
</tr>
</tbody>
</table>

National and International Standards Groups

<table>
<thead>
<tr>
<th>ILAC G19 (2014) and ISO/IEC 17025 (2017)</th>
<th>Standards community</th>
<th>ISO committee</th>
<th>Accrediting bodies (ANAB; formerly ASCLD/LAB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/ASB Standards (and OSAC Registry)</td>
<td>SDOs with forensic practitioner community input</td>
<td>SDOs (ASB, ASTM) and OSAC</td>
<td>Accrediting bodies as they are adopted</td>
</tr>
</tbody>
</table>

Country-Specific or Region-Specific Forensic Science Efforts

<table>
<thead>
<tr>
<th>UK Forensic Science Code of Practice</th>
<th>UK Forensic Science Regulator</th>
<th>UK Forensic Science Regulator WGs</th>
<th>UK forensic laboratories and practitioners</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENFSI</td>
<td>European forensic laboratories</td>
<td>ENFSI WGs</td>
<td>European forensic laboratories</td>
</tr>
</tbody>
</table>

Abbreviations Defined

- **ANAB** = ANSI National Accreditation Board
- **ANSI** = American National Standards Institute
- **ASB** = AAFS Standards Board
- **ASCLD/LAB** = American Society of Crime Laboratory Directors Laboratory Accreditation Board
- **ASTM** = American Society for Testing and Materials
- **DAB** = DNA Advisory Board
- **ENFSI** = European Network of Forensic Science Institutes
- **IEC** = International Electrotechnical Commission
- **ILAC** = International Laboratory Accreditation Cooperation
- **ISFG** = International Society for Forensic Genetics
- **ISO** = International Organization for Standardization
- **OSAC** = Organization of Scientific Area Committees for Forensic Science
- **SDO** = Standards Developing Organization
- **SWGDAM** = Scientific Working Group for DNA Analysis Methods
- **WG** = working group
Validation Guidance Documents from Forensic Discipline-Specific Efforts (DNA)

 - [Quality Assurance Standards for Forensic DNA Testing Laboratories](#)
 - [Quality Assurance Standards for DNA Databasing Laboratories](#)
 - [Guidance Document for the FBI QAS (effective 07/01/2020)](#)
 - Standard 8 Validation

- **SWGDAM Validation Guidelines** (2004, 2012, **2016**)
 - [Validation Guidelines for DNA Analysis Methods](#)
 - Section 3: Developmental Validation
 - **Section 4: Internal Validation**
 - Section 6: Performance Check
 - Section 7: Software
Developmental Validation shall include, where applicable:

(3.1) Characterization of genetic markers, (3.2) species specificity, (3.3) sensitivity studies, (3.4) stability studies, (3.5) precision and accuracy, (3.6) case-type samples, (3.7) population studies, (3.8) mixture studies, (3.9) PCR-based studies, (3.10) NGS-specific studies

Internal Validation shall include these studies:

✓ (4.1) Known or mock evidence samples
✓ (4.2) Sensitivity and stochastic studies
✓ (4.3.1) Precision and accuracy: repeatability
✓ (4.3.2) Precision and accuracy: reproducibility
✓ (4.4) Mixture studies
✓ (4.5) Contamination assessment

(4.4) Mixed DNA samples that are representative of those typically encountered by the testing laboratory should be evaluated
Validation Guidance Documents from National and International Groups

- International Laboratory Accreditation Cooperation (2002, 2014)
 - ILAC G19:08/2014 Modules in a Forensic Science Process

 - ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories (see Section 7.2.2 Validation of methods)

- ANSI/ASB/OSAC (see next slide)

- ANAB Accreditation Requirements (2017, 2019)

- PCAST (President’s Council of Advisors on Science and Technology) (2016, 2017)
 - Report to the President – Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods
 - An Addendum to the PCAST Report on Forensic Science in Criminal Courts

- OSAC Human Factors Committee (2020)
 - Human Factors in Validation and Performance Testing in Forensic Science
The research strategies discussed here are helpful for establishing the range of validity of new forensic science methods and for demonstrating the range of validity of older methods.

- Defines and explains key terms: accuracy, consistency, reliability, sensitivity, specificity, validity, validation, black-box and white-box studies
- Reviews some key issues in designing, conducting, and reporting validation research
 1. Institutional Review Board review
 2. Study administration general issues
 3. Source of test specimens: created versus casework
 4. Evaluating test specimens regarding suitability and level of difficulty
 5. Adequacy of sample size
 ...
 9. How to report the results of validation studies on methods used to reach categorical results
 10. Special problems in assessing the accuracy of likelihood ratios
 11. Sharing research findings in an open, transparent manner
DNA Validation Guidance Documents from OSAC and ANSI/ASB

Published by Standards Developing Organization (SDO)

OSAC Draft/Proposed Standards (under development by ASB)

1. Standard for Internal Validation of Forensic DNA Analysis Methods [ASB 38]
2. Standard for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms [ASB 39]
3. Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms [ASB 129]
4. Best Practice Recommendation for Validation of Forensic DNA Software [ASB 114]
Validation Guidance Documents from Country-Specific or Region-Specific Efforts

• Eurachem (1998, 2014)
 • The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics

• ENFSI DNA Working Group (2010)
 • Recommended Minimum Criteria for the Validation of Various Aspects of the DNA Profiling Process

• ENFSI (2006, 2014)
 • Guidelines for the Single Laboratory Validation of Instrumental and Human Based Methods in Forensic Science

• UK Forensic Science Regulator (2014, 2020)
 • Codes of Practice and Conduct (2020, FSR-C-100, Issue 5)
 • see section 21 on test methods and method validation
 • Validation Guidance (2014, FSR-G-201, Issue 1)
 • Validation Protocol – Use of Casework Material (2016, FSR-P-300, Issue 1)

• ANZPAA NIFS (Australia New Zealand Policing Advisory Agency National Institute of Forensic Science) (2019)
 • Empirical Study Design in Forensic Science: A Guideline to Forensic Fundamentals
PGS Software Validation Guidance Documents

- **SWGDAM PGS Validation (2015)**
 - Guidelines for the Validation of Probabilistic Genotyping Systems
- **ISFG DNA Commission (2016)**
 - Recommendations on the validation of software programs performing biostatistical calculations for forensic genetic applications
- **ENFSI DNA Working Group (2017)**
 - Best Practice Manual for the Internal Validation of Probabilistic Software to Undertake DNA Mixture Interpretation
- **UK Forensic Science Regulator (2018)**
 - Software Validation for DNA Mixture Interpretation (FSR-G-223)
- **ANSI/ASB (2020)**
 - Standard 018: Standard for Validation of Probabilistic Genotyping Systems
- **FBI Quality Assurance Standards (2020)**
 - See Standard 8.8
Some Published Articles in Peer-Reviewed Journals on PGS and Likelihood Ratio Validation

PGS

 - A series of recommended tests when validating probabilistic DNA profile interpretation software

 - Testing likelihood ratios produced from complex DNA profiles

 - Validation of probabilistic genotyping software for use in forensic DNA casework: Definitions and illustrations

 - ISFG DNA Commission: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetic applications

LR

• Morrison 2011 (*Science & Justice* 51:91-98)
 - Measuring the validity and reliability of forensic likelihood-ratio systems

 - A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation
New Books to Assist with DNA Mixture Interpretation

CRC Press (January 2020)

Table of Contents
1. DNA Profiling Interpretation
2. Statistics and Proposition Setting
3. LR Single-Source Examples and Population Genetics
4. Binary LR for Mixtures
5. LRs Considering Relatives as Alternative Contributors
6. Probabilistic Genotyping: Semicontinuous Models
7. Probabilistic Genotyping: Continuous Models
8. Considerations on Validation of PGS

Appendix 1: Allele Frequencies
Appendix 2: Model Answers

Hardback: 258 pages
109 references cited

Elsevier Academic Press (June 2020)

Table of Contents
1. Forensic Genetics Basics
2. DNA Profiles
3. Allele Drop-out
4. Low-template DNA
5. LRmix Model Theory
6. LRmix Studio
7. Continuous Model Theory
8. EuroForMix
9. Validation
10. DNAxs
11. SmartRank & CaseSolver
12. Interpretation & Reporting
13. Complex DNA Profiling by Massively Parallel Sequencing

Appendix A: Genotype Probabilities
Appendix B: Probabilistic Models

Paperback: 530 pages
362 references cited
Some Definitions for Validation

<table>
<thead>
<tr>
<th>Source</th>
<th>Definition of Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWGDAM 2016 Validation Guidelines</td>
<td>A process by which a procedure is evaluated to determine its efficacy and reliability for forensic casework and/or database analysis</td>
</tr>
<tr>
<td>FBI QAS 2020</td>
<td>A process by which a method is evaluated to determine its efficacy and reliability for forensic casework analysis and includes the following: (1) developmental validation… and (2) internal validation…</td>
</tr>
<tr>
<td>ISO/IEC 17025:2017</td>
<td>Verification, where the specified requirements are adequate for intended use [verification: provision of objective evidence that a given item fulfils specified requirements]</td>
</tr>
<tr>
<td>ILAC G19 (2014)</td>
<td>Validation is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled</td>
</tr>
<tr>
<td>OSAC Lexicon</td>
<td>The process of performing and evaluating a set of experiments that establish the efficacy, reliability, and limitations of a method, procedure or modification thereof; establishing recorded documentation that provides a high degree of assurance that a specific process will consistently produce an outcome meeting its predetermined specifications and quality attributes. May include developmental and/or internal validation.</td>
</tr>
</tbody>
</table>

From Oxford Dictionary

- **Efficacy**: the ability to produce a desired or intended result
- **Reliability**: the quality of being trustworthy or of performing consistently well; the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate

For more information, visit https://www.lexico.com/en/definition
Some Definitions for Internal Validation

<table>
<thead>
<tr>
<th>Source</th>
<th>Definition of Internal Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWGDAM 2016 DNA Validation Guidelines</td>
<td>An accumulation of test data within the laboratory to demonstrate that established methods and procedures perform as expected in the laboratory</td>
</tr>
<tr>
<td>FBI QAS 2020</td>
<td>An accumulation of test data within the laboratory to demonstrate that established methods and procedures perform as expected in the laboratory</td>
</tr>
<tr>
<td>SWGDAM 2015 PGS Validation Guidelines</td>
<td>The accumulation of test data within the laboratory to demonstrate that the established parameters, software settings, formulae, algorithms and functions perform as expected</td>
</tr>
<tr>
<td>ASB018 Standard for Validation of PGS</td>
<td>The acquisition of test data within the laboratory to verify the functionality of the system, the accuracy of statistical parameters, the appropriateness of analytical and statistical parameters, and the determination of limitations of the system</td>
</tr>
<tr>
<td>ISFG DNA Commission (Coble et al. 2016)</td>
<td>Empirical studies performed either within a laboratory or outsourced to a third-party entity to ensure that the software runs properly within the relevant laboratory</td>
</tr>
</tbody>
</table>

What does it mean to “perform as expected”?

An expectation is set during developmental validation studies.
Users Decide When Sufficient Data Have Been Collected

• Validation studies/experiments performed in a laboratory provide information to make assessments regarding the degree of reliability for a specified method.

• These studies are concluded and deemed sufficient when those performing them have convinced themselves that the results obtained are reliable for their application.
 • In other words, when the intended users are happy with how things work compared with how they plan to use them.
 • A determination of whether the amount and type of data available is satisfactory or sufficient to the user of the information is something that must be decided by the user of the information not the provider.
Information Provider and User

Responsibilities and Examples

Provider Responsibilities
- **Provides accessible data** to be used for assessment by the user and **explains relevance** and significance

User Responsibilities
- **Determines validity** (whether method is fit-for-purpose) and assesses degree of reliability and makes decision whether sufficient information exists for the intended application

Examples

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Product developer of software or instrument</th>
<th>Product user of software or instrument (forensic scientist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert witness providing testimony (forensic scientist)</td>
<td>Judge and lawyers in a trial or admissibility hearing using provided testimony</td>
<td></td>
</tr>
<tr>
<td>Documentary standard developer</td>
<td></td>
<td>Standard user, who makes it “regulatory” when adopting it</td>
</tr>
</tbody>
</table>
Validation Studies Conducted vs. a “Validated” Method

• Guidance documents on validation in forensic science are typically focused on types of tests to perform in gathering the data rather than ways to assess the data.

• In our opinion, it is unwise to describe a method as “validated” in a generic fashion without some context around the method’s use and access to any underpinning data to support claims of validity and reliability for those who would like to independently review them.
Are We on the Right Side of the Equation?

Systems Thinking is Looking at the Big Picture and How Inputs Impact Outputs…

Component(s) + Process(es) = Outcome

Left Side

- Task-Driven

Right Side

- Performance-Based

How? How well? So what?

What?
Our Goal for This Workshop

To Review Important Principles to Aid Understanding of Validation…

Key Aspects of Validation:

• How to **Design** Validation Studies
• How to **Perform** Validation Studies
• How to **Describe** Validation Studies
• How to **Utilize** Validation Data

In Module 2, Hari will discuss reliability and conceptual approaches to assessing the degree of reliability with LR results produced by PGS.
Thank you for your attention!

Points of view are the presenters and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Contact Information

John M. Butler
john.butler@nist.gov

Hari K. Iyer
hariharan.iyer@nist.gov
Validation Principles, Practices, Parameters, Performance Evaluations, and Protocols

Reliability Assessment of LR Systems: General Concepts

Module 2

Hari K. Iyer
National Institute of Standards and Technology
I would like to thank Steve Lund, William Guthrie, Antonio Possolo, Adam Pintar, Jan Hannig, Marty Herman, and other NIST colleagues, for many ongoing, meaningful discussions on foundational concepts in statistics.

I wish to also thank John Butler, Katherine Gettings, Niki Osborne, Rich Press, Sarah Riman, Melissa Taylor, Pete Vallone, and Sheila Willis – and the DNA Mixture Resource Group, for valuable discussions on Fundamentals of DNA mixture interpretation and related issues.

Points of view are of the presenters and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial entities are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the entities identified are necessarily the best available for the purpose.
What is “Reliability”?

How is reliability demonstrated/judged?

Terms associated with Reliability: Accuracy, Precision, Repeatability, Reproducibility, Uncertainty, Error

System Reliability vs Component Reliability

Main criteria for Reliability: Discrimination power and Calibration Accuracy

Introduction to Discrimination/Calibration concepts

Summary
Reliability

/re-ly-a-bi-li-ti/

1. To be able to produce good results time after time. 2. How much a person can be depended on.
The Cambridge Dictionary describes “Reliability” as “how accurate or able to be trusted someone or something is considered to be.”

[https://dictionary.cambridge.org/us/dictionary/english/reliability]
Trust

Trust can arise in several ways:

• Logic
• Empirical demonstrations of a claim in ground truth known situations; Making predictions and verifying if the predictions come true
• Belief (in another person’s opinions, e.g. expert)
I can read your mind.

Oh yeh?

Think of a number.

7

It’s a 7.

OK, I believe you.
Role of Science

- Absolute truth is difficult or impossible to establish but one can be “convinced” that something is true based on a combination of the above modes of forming trust.

- Each individual has his/her own thought processes involving combination of empirical knowledge with intuition and belief that lead him/her to form a degree of acceptance of a claim.

- To what extent one is convinced of the truth of a claim is a personal matter.

Science attempts to minimize the level of belief one needs to accept a claim by providing empirical demonstrations of the extent to which the claim is “correct”.
The plain English meaning of the word 'reliability' is 'trustworthiness'. This is the sense in which we use this term here.

In the fields of psychology and sociology the term **Reliability** is used to describe **Consistency**. This has led to much confusion.

Reliability implies consistency

But consistency alone does not imply reliability

Reliability requires being consistently accurate
A Method is RELIABLE if it produces ‘good’ results time after time.

What is meant by ‘good’? Rather than give binary answers (reliable or not reliable) or personal assessments (method has a high degree of reliability) what we require are FACTS and DATA.

Personal Assessment: “this surgical procedure has an excellent track record of being successful”.

Facts&Data: “90 out of 100 patients who underwent this type of surgery survived and lived for at least 5 more years. The other 10 died on the operating table.”

Judgements of reliable/unreliable are personal. But facts and data are not personal.
Terms Related to Reliability

- Accuracy
- Precision
- Repeatability
- Reproducibility
- Uncertainty
- Error
Accuracy

• Accuracy
• Precision
• Repeatability
• Reproducibility
• Uncertainty
• Error

Accuracy: ‘how close is the result to the true value?’
or ‘how often does this procedure lead to correct decisions (desired outcomes) or conclusions?’

Inaccuracy: ‘how far is the result from the true value?’

True value can be an elusive quantity.

Usually substituted with ‘highly trusted reference value’. [Standard Reference Materials (SRMs): values from NIST 😊]

Or a ‘consensus value’ based on various authoritative national metrology labs.
Precision: ‘To what extent do repeated measurements of the ‘same’ quantity agree with one another?

Imprecision: ‘To what extent do repeated measurements of the ‘same’ quantity disagree with one another?

When repeated measurements give different values (there is measurement variability) we can all see that the process does not produce perfectly accurate results. So the focus shifts to

- How variable are the different measurements of the same quantity?
Repeatability and Reproducibility explore the extent to which measurements of the ‘same’ quantity differ under varying conditions.
Uncertainty

- Accuracy
- Precision
- Repeatability
- Reproducibility
- **Uncertainty**
- Error
• **Measurement uncertainty** is the doubt about the true value of the measurand that remains after making a measurement.

• Measurement uncertainty is described fully and quantitatively by a probability distribution on the set of values of the measurand.

• At a minimum, it may be described summarily and approximately by a quantitative indication of the dispersion (or scatter) of such distribution.
Uncertainty is the doubt regarding the underlying truth that remains after considering all available relevant information.
Conventional meaning: Mistake

Statistical usage: Difference between offered result and ‘truth’ or an authoritative ‘reference value’
If you toss this quarter twice, what is the probability that both tosses will give ‘HEADS’?
There are 4 possible outcomes:
(Tail, Tail), (Tail, Head), (Head, Tail), (Head, Head).

Only one of the 4 outcomes is what we want.

Assuming, all 4 outcomes are equally likely,

The probability of getting both heads in two tosses of the coin must be $\frac{1}{4}$.

EXPERIMENT: A coin is tossed two times and the number of ‘heads’ is recorded (0 or 1 or 2). The experiment is repeated 1000 times. Based on our “model” the expected frequencies are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Tail, Tail</th>
<th>Tail, Head</th>
<th>Head, Tail</th>
<th>Head, Head</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPECTED</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>1000</td>
</tr>
</tbody>
</table>
There are 4 possible outcomes:
(Tail, Tail), (Tail, Head), (Head, Tail), (Head, Head).
Only one of the 4 outcomes is what we want.
Assuming, all 4 outcomes are equally likely,
The probability of getting both heads in two tosses of the coin must be \(\frac{1}{4} \).

EXPERIMENT: A coin is tossed two times and the number of ‘heads’ is recorded (0 or 1 or 2). The experiment is repeated 1000 times. But suppose the observed frequencies are very different!

<table>
<thead>
<tr>
<th></th>
<th>Tail, Tail</th>
<th>Tail, Head</th>
<th>Head, Tail</th>
<th>Head, Head</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPECTED</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>1000</td>
</tr>
<tr>
<td>OBSERVED</td>
<td>360</td>
<td>237</td>
<td>243</td>
<td>160</td>
<td>1000</td>
</tr>
</tbody>
</table>
“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman
Nobel Laureate, 1965
Quantum Electrodynamics & Physics of Elementary Particles
Rule 702. Testimony by Expert Witnesses

A witness who is qualified as an expert by knowledge, skill, experience, training, or education may testify in the form of an opinion or otherwise if:

(a) the expert’s scientific, technical, or other specialized knowledge will help the trier of fact to understand the evidence or to determine a fact in issue;

(b) the testimony is based on sufficient facts or data;

(c) the testimony is the product of reliable principles and methods; and

(d) the expert has reliably applied the principles and methods to the facts of the case.

https://www.law.cornell.edu/rules/fre/rule_702
Rule 702 has been amended in response to *Daubert v. Merrell Dow Pharmaceuticals, Inc.*, 1993

- In *Daubert* the Court charged trial judges with the responsibility of acting as gatekeepers to **exclude unreliable expert testimony**, and

- the Court in *Kumho* clarified that this gatekeeper function applies to all expert testimony, not just testimony based in science (*Kumho Tire Co. v. Carmichael*, 1999)

https://www.law.cornell.edu/rules/fre/rule_702
Daubert set forth a non-exclusive [non-exhaustive?] checklist for trial courts to use in assessing the reliability of scientific expert testimony.

The specific factors explicated by the Daubert Court are

1) whether the expert's technique or theory can be or has been tested—that is, whether the expert's theory can be challenged in some objective sense, or whether it is instead simply a subjective, conclusory approach that cannot reasonably be assessed for reliability;

2) whether the technique or theory has been subject to peer review and publication;

3) the known or potential rate of error of the technique or theory when applied;

4) the existence and maintenance of standards and controls; and

5) whether the technique or theory has been generally accepted in the scientific community.

https://www.law.cornell.edu/rules/fre/rule_702
DNA Mixture Interpretation

Reliability Considerations
FIGURE 1.1 Steps involved in the overall process of forensic DNA typing. This book focuses on understanding the data through data interpretation and statistical interpretation.

JOHN M. BUTLER
National Institute of Standards and Technology
Gaithersburg, Maryland, USA

Advanced Topics in Forensic DNA Typing: Interpretation
http://dx.doi.org/10.1016/B978-0-12-405213-0.00001-4
FIGURE 1.1 Steps involved in the overall process of forensic DNA typing. This book focuses on understanding the data through data interpretation and statistical interpretation.

JOHN M. BUTLER
National Institute of Standards and Technology
Gathersburg, Maryland, USA

Advanced Topics in Forensic DNA Typing: Interpretation
http://dx.doi.org/10.1016/B978-0-12-405213-0.00001-4
FIGURE 1.1 Steps involved in the overall process of forensic DNA typing. This book focuses on understanding the data through data interpretation and statistical interpretation.
FIGURE 1.1 Steps involved in the overall process of forensic DNA typing. This book focuses on understanding the data through data interpretation and statistical interpretation.
H_p: DNA from POI is in the sample

H_d: DNA from POI is not in the sample
Likelihood Ratio

$$LR = \frac{Pr(E|H_p, I)}{Pr(E|H_d, I)}$$

H_p: DNA from POI is in the sample

H_d: DNA from POI is not in the sample

I: Background Information prior to examining crime sample
There are two aspects to judging the reliability of an LR system for assessing value of forensic DNA evidence:

1. **Discrimination power**
 - Ability to discriminate between Hp-true situations from Hd-true situations

2. **Calibration Accuracy**
 - Accuracy of weight of evidence assessment
Discrimination Power

The ability of an LR system to discriminate between H_p and H_d depends on

1. How much of the discriminating information in the sample is extracted and measured?

 (e.g., CE vs NGS)

2. Does the interpretation make effective use of such information?

 (e.g., model fidelity)
Empirical Assessment of Performance

- Suppose we have a large collection of ground truth known DNA samples representing different scenarios (degradation, number of contributors, template amounts, mixture ratios) we expect to encounter in case work.

- For each sample, select a known contributor profile or a known noncontributor profile (say by coin toss) and send them through the LR pipeline, from analysis to interpretation. (blinded)

- Record the value of LR obtained along with whether it is for an H_p true case or for an H_d true case.

- At the end of this exercise we will have a pool of H_p true LR values and a pool of H_d true LR values.
Ground Truth Known Tests

<table>
<thead>
<tr>
<th>Sample Details</th>
<th>Noncontributor LRs</th>
<th>Contributor LRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P, 1:1, degraded, 100 pg, high allele overlap</td>
<td>0.00E+00</td>
<td>3.68E+08</td>
</tr>
<tr>
<td>2P, 9:1, degraded, high allele overlap</td>
<td>6.68E-03</td>
<td>2.10E+07</td>
</tr>
<tr>
<td>1.48E-03</td>
<td>7.34E+10</td>
<td></td>
</tr>
<tr>
<td>1.60E-03</td>
<td>1.26E+09</td>
<td></td>
</tr>
<tr>
<td>1.04E+00</td>
<td>1.45E+08</td>
<td></td>
</tr>
<tr>
<td>0.00E+00</td>
<td>3.87E+10</td>
<td></td>
</tr>
<tr>
<td>1.32E-01</td>
<td>3.12E+07</td>
<td></td>
</tr>
<tr>
<td>3.98E-03</td>
<td>1.71E+06</td>
<td></td>
</tr>
<tr>
<td>1.12E-02</td>
<td>6.56E+10</td>
<td></td>
</tr>
<tr>
<td>1.85E-06</td>
<td>1.95E+08</td>
<td></td>
</tr>
<tr>
<td>1.56E-01</td>
<td>1.61E+06</td>
<td></td>
</tr>
<tr>
<td>5.48E-09</td>
<td>4.13E+10</td>
<td></td>
</tr>
<tr>
<td>3.97E-04</td>
<td>1.37E+08</td>
<td></td>
</tr>
<tr>
<td>0.00E+00</td>
<td>1.11E+06</td>
<td></td>
</tr>
<tr>
<td>6.07E-13</td>
<td>5.18E+09</td>
<td></td>
</tr>
<tr>
<td>5.03E-04</td>
<td>2.99E+07</td>
<td></td>
</tr>
<tr>
<td>7.10E-03</td>
<td>1.87E+05</td>
<td></td>
</tr>
<tr>
<td>0.00E+00</td>
<td>1.80E+09</td>
<td></td>
</tr>
<tr>
<td>0.00E+00</td>
<td>8.08E+08</td>
<td></td>
</tr>
<tr>
<td>5.81E-01</td>
<td>7.17E+17</td>
<td></td>
</tr>
<tr>
<td>8.81E-08</td>
<td>5.81E+13</td>
<td></td>
</tr>
<tr>
<td>1.32E+01</td>
<td>2.76E+09</td>
<td></td>
</tr>
<tr>
<td>2.25E+14</td>
<td>3.16E+17</td>
<td></td>
</tr>
<tr>
<td>2.12E+01</td>
<td>4.68E+13</td>
<td></td>
</tr>
<tr>
<td>2.78E+01</td>
<td>4.78E+07</td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer: This is only a thought experiment. Actual assessment will require a well thought out experimental design.
Well Separated Hp-true & Hd-true LR Distributions

LR System 1

RED: Contributor LRs (H_p True)
BLUE: Noncontributor LRs (H_d true)
Overlapping Hp-true & Hd-true LR Distributions

LR System 2

RED: Contributor LRs (H\textsubscript{p} True)
BLUE: Noncontributor LRs (H\textsubscript{d} true)
Overlapping Hp-true & Hd-true LR Distributions

LR System 2

RED: Contributor LRs (H_p True)
BLUE: Noncontributor LRs (H_d true)
LR System 1 is more discriminating between H_p and H_d than LR system 2.
The same LR System is more discriminating for 2 person mixtures than for 5 person mixtures.
LR value of x is x times more likely to occur under H_p than under H_d.
LR value of x is x times more likely to occur under H_p than under H_d. (LR of LR is LR)

\[\text{Calibration Accuracy} \]

\[\text{In principle, this property can be empirically tested} \]
Calibration Accuracy: Empirical Assessment

Noncontributors LR

Contributors LR
Calibration Accuracy: Empirical Assessment

Noncontributors LR

Contributors LR
Contributors LR

Noncontributors LR
Calibration Accuracy: Empirical Assessment

A Different LR system Fails Calibration Check

Contributors LR
1. Sample
 a) Sample amount (contributor template amounts)
 b) Sample quality (degradation level)

2. Labs
 a) Kits used
 b) Equipment Used
 c) Number of PCR cycles
 d) Analyst
 e) Choice of Analytical Threshold (AT)

3. Probabilistic Genotyping (PG) Model
 a) Choice of model
 b) Choice of laboratory specific parameters for use in the PG model
 c) Propositions Chosen (H_p and H_d)

4. Software Implementing the PG Model
 a) Choice of numerical methods for computing LR (MCMC, Numerical Integration)
 b) Choice of number of iterations OR numerical integration parameters (e.g. grid size)
Degree of agreement among a group of labs by itself does not characterize degree of reliability

but

Degree of substantial disagreement among labs (or methods) makes it difficult to discern the degree of reliability of results provided by any particular laboratory.

Such judgements will have to be based on internal validation data from the laboratory providing the analysis and report in any given case.
GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06).

Reporting conclusions: Results and evaluation

P.A. Barrioa,b,c, M. Crespilloa,c,*, J.A. Luquea,c, M. Alerd, C. Baeza-Richere, L. Baldassarrif, E. Carnevalig, P. Goulavolb, I. Floresi, O. Garcíaj, M.A. Garcíak, R. Gonzálezl, A. Hernándezm, V. Inglésn, G.M. Luqueb, A. Mosquera-Miguelo, S. Pedrosap, M.I. Pontesq, M.J. Portor, Y. Posadas, M.I. Ramellat, T. Ribeirou, E. Riegov, A. Salaw, V.G. Saragonix, A. Serranoc, S. Vannelliy

Participants were provided with the thresholds values used/employed: analytical threshold of 50 RFUs, stochastic threshold of 150 RFUs, and stutter threshold for each of the markers/kits according to the manufacturer's specifications.
GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06).
Reporting conclusions: Results and evaluation

Table 1
Hypothesis and LR values obtained by each of the participating laboratories. All laboratories used the LrmixStudio software, except those marked as * (EuroForMix) and ** (DNAMIX). Legend: V (Victim), S (Suspect), P (Regular partner), U (Unknown).

<table>
<thead>
<tr>
<th>Labs</th>
<th>LR value</th>
<th>Hypothesis</th>
<th>Other evaluations</th>
<th>LR value</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHEPMIX 08*</td>
<td>1.7200E + 02</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 23</td>
<td>2.6000E + 03</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 26</td>
<td>6.1640E + 03</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 17</td>
<td>6.5565E + 04</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 07</td>
<td>6.8487E + 04</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 05</td>
<td>1.4800E + 05</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 22</td>
<td>2.8776E + 05</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 06</td>
<td>3.2234E + 05</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 16</td>
<td>4.3423E + 05</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 18</td>
<td>1.3900E + 06</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 03</td>
<td>1.8200E + 06</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 02</td>
<td>2.7323E + 06</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 20</td>
<td>5.5183E + 06</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 15</td>
<td>1.9820E + 07</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 27</td>
<td>1.3587E + 08</td>
<td>V + S + P/V + U + P</td>
<td>7.4048E + 19</td>
<td>P/U</td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 13**</td>
<td>2.7300E + 10</td>
<td>V + S + P/V + U + P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 10</td>
<td>3.2032E + 14</td>
<td>V + S + P/V + U + P</td>
<td>1.1551E + 07</td>
<td>V + S + P/V + U1 + U2</td>
<td></td>
</tr>
<tr>
<td>GHEPMIX 24</td>
<td>1.3400E + 19</td>
<td>V + P/V + U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DNA mixtures interpretation – A proof-of-concept multi-software comparison highlighting different probabilistic methods’ performances on challenging samples

E. Alladio, M. Omedei, S. Cisana, G. D’Amico, D. Caneparo, M. Vincenti, P. Garofano

Furthermore, log(LR) results provided by fully-continuous models proved similar and convergent to one another, with slightly higher within-software differences (i.e. approximately 3–4 degrees of magnitude).

A factor of 1000 to 10000?
Effect of 3 to 4 orders of magnitude:

Suppose prior odds = 1: 1000000 = (1/1,000,000)

(Crime occurred in the city of New York, say)

LR1 = 50000 (Strong evidence)

LR2 = 50000000 (Very Strong Evidence) [a factor of 1000 higher than LR1]

Posterior Probability 1 = 0.048 = 4.8%

Posterior Probability 2 = 0.98 = 98%

Posterior Odds = Prior Odds x LR

Posterior Probability = \frac{(LR \times \text{prior odds})}{1 + (LR \times \text{prior odds})}
Summary

1. What is meant by “Reliability”?
2. System Reliability vs Component Reliability
3. The need for empirical testing of models
4. Main requirements for reliability: Discrimination power and Calibration Accuracy
5. Discussion illustrating the concepts of discrimination power and calibration accuracy with data from validation studies
6. Factor Space
7. Reproducibility is not Reliability
8. Impact of LR differences between systems in casework
In Module 3
John will talk about Validation Plans & Experimental Design
Validation Principles, Practices, Parameters, Performance Evaluations, and Protocols

Validation Plans & Experimental Design

Module 3

John M. Butler
National Institute of Standards and Technology
Disclaimers

Points of view are those of the presenter and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Identification does not imply endorsement
Certain commercial entities are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the entities identified are necessarily the best available for the purpose.
Module 3 (John)

• Review Input Received

• Creating a Validation Plan

• Considering Experimental Design
 • Types of studies and numbers of samples depend on what you decide is fit for purpose
 • Factor space coverage for DNA mixture interpretation
 • Review what has been done in some published PGS studies
Some Specific Input Received for This Workshop

- **Teresa Cheromcha** (Colorado Bureau of Investigation-Grand Junction)
 - Assistant TL for CBI system with 5 laboratories
- **Kristy Kadash** (Jefferson County Regional Crime Laboratory, Colorado)
 - Member of SWGDAM and OSAC and former TL
- **Kate Philpott** (Adjunct Faculty/Research Analyst, VCU Forensic Science Program)
 - Legal and scientific consultant; recently co-authored the June 2020 *Gissantaner* amicus brief
- **Janel Smith** (Phoenix Police Department)
 - DNA Technical Leader for a large city laboratory; member of OSAC

I reached out to each of them and asked for ideas of things we should cover to best assist DNA analysts and TLs and specifically what information on the topic of validation would be most helpful to them in their work.
Thoughts from Kristy Kadash (1)
CODIS Admin, Jefferson Co. Colorado; member of SWGDAM & OSAC

What would be most helpful: We spoke by phone for about an hour

• How to design validation studies
 • Review purpose of each study and discuss appropriate experiments to test the system

• How to analyze the data
 • Going beyond calculating averages and standard deviations, how to display and graph information, how to assess differences from previous systems, how to state results (want to avoid repetitive explanations in summaries)

• How to report and communicate results
 • Without being too brief or too verbose, how to convey what you have done and why studies were performed
Thoughts from Kristy Kadash (2)
CODIS Admin, Jefferson Co. Colorado; member of SWGDAM & OSAC

What would be most helpful:

• How to assist auditors in deciding what is an appropriate validation study
 • Often if auditors see the right key words and headings following QAS or SWGDAM, then they may view the study as good enough and not necessarily consider how effective or complete the validation studies are

• How much testing is needed to verify that specific parts of probabilistic genotyping software are working properly
 • With software version changes, it can be challenging to do function testing. What are the most important tests?
 • How you use the software dictates how you would validate it
 • When do you have to do validation vs. verification vs. performance check

• Provide a reminder that validation and proficiency tests are an important part of doing quality work
What would be most helpful:

- **How to thoroughly test and define limitations**, especially with PGS
 - ESR has provided some excellent resources for validation and implementation
 - Potential area of concern: the ability to interpret mixtures of related contributors
 - She commented that it would be beneficial to develop mixtures in-house where you can know the ground truth of the contributors and the ratios so you can see the output files from the PGS you are using to interpret
 - “When is enough, enough…knowing you can’t test everything?”

- **How many people should be involved** in the validation studies
 - Desire to have sufficient people to provide a greater depth of knowledge
 - But laboratory management wants to minimize the impact to casework production while still completing the validation in a timely manner

She provided an email response to my questions
Thoughts from Teresa Cheromcha (1)
Assistant DNA Technical Leader, Colorado Bureau of Investigation (CBI)

- Teresa provided her thoughts to me on her validation experience in a four-page single-spaced outline, then we talked for about 90 minutes the next day.

- Some of my favorite quotes from my conversation with Teresa:
 - “We all want to do the best science”
 - “Don’t be afraid to ask your peers for help”
 - “It’s okay if you don’t know everything”

- From August 2017 to September 2018, Teresa organized and conducted STRmix validation studies and brought PGS online for their lab system:
 - ESR provided a four-day training course and a one-day follow-up was received a year later.
 - An 8-member committee she chaired (including representatives from each of their 5 laboratories at the time, TL, & QM) met regularly and used Trello for project planning and tracking assignments.
 - ESR (STRmix provider) supplied a proposal on studies to meet SWGDAM 2015 PGS guidelines.
 - Two committee members designed mixtures (used DNA from staff members for unrelated individuals and a family reunion to collect related individuals); examined number of contributors, allele sharing (related), ratios, template amounts.
 - Mixture samples were created after carefully quantifying DNA samples; replicates were run; tested samples on all 9 CE instruments across their 5 laboratories (now down to 4 laboratories).
 - ESR crunched their data and wrote up the CBI validation summary.
Some additional thoughts and information:

- Validation should explore the edges, the challenging samples – committee members provided ideas on the types of samples that would be representative of casework seen in their laboratories or samples they had previously seen that were challenging
 - CBI has purchased a software upgrade, will conduct another internal validation study, and hopes to move up to 5-person mixtures after conducting more experiments
- Struggles with “analysis paralysis” -- when do I have enough data, or did I over do it?
- To follow up on issues seen, CBI holds a monthly TL meeting with all analysts

Continuing Education through Reading the Literature
- Each analyst selects articles to read (8 is the minimum per year, 2 are summarized and shared)
Before implementation of a new method:

- A training plan was developed which included study questions, terms, readings, and tasks

- Analysts at CBI are expected to read and know the validation summary results and to understand the limitations
 - Analysts would not likely examine the original data used to generate the validation summary

- Competency testing
 - Developed a training plan which included study questions, terms, readings and required tasks
 - Written exam: 10-12 questions
 - Practical exam: single source to 4p mixtures (e.g., redefine an OL allele as stutter)
 - Oral exam: mock trial assessment by TL and assistant TL before going to court
Thoughts from Kate Philpott (1)
Adjunct Faculty/Research Analyst, VCU Forensic Science Program

We spoke by phone for about an hour following a presentation that I gave a few weeks ago entitled “DNA Mixtures: Where We Were and Where We Are Now” for the National Association of Criminal Defense Lawyers (NACDL) National Forensic College DNA Day

1. She was surprised that the ISFG DNA Commissions (2006, 2012, 2016, 2018, 2020) commented years ago on issues faced today with probabilistic genotyping

2. She has observed that labs are using STRmix in casework on much more challenging mixtures than are tested during validation; standard operating procedures do not provide guidance to analysts as to what kinds of samples go beyond the scope of the lab’s validation.
Comments continued:

3. **Validation summaries**, which are often the product of a template supplied by the PGS developer, do not provide enough information to allow an external reviewer to connect the dots (i.e., correspondence between samples tested and results obtained). While the full set of validation data would presumably supply the needed information, labs largely resist efforts to access this information (even when requested in discovery or pursuant to public records laws), and there is an unfortunate dearth of requirements expressly related to validation data accessibility.
Comments continued:

4. While ASB Standard 020 requires investigation of mixtures with low and high degrees of allele sharing, SWGDAM does not expressly require this and many labs have either not investigated the impact of allele sharing at all or have done so in a cursory manner. Kinship studies – where mixtures are comprised of multiple related individuals, and are tested both against true contributors, and related non-contributors – are rarely included in validation studies despite the fact that scenarios involving multiple related individuals as potential contributors are not uncommon in casework.
Creating a Validation Plan
(Internal Validation)
Preliminary Work Requested
by the SWGDAM 2015 PGS Validation Guidelines

• “Prior to validating a probabilistic genotyping system, the laboratory should ensure that [DNA analysts possess] the appropriate foundational knowledge in the calculation and interpretation of likelihood ratios.” (p. 3)

• “Laboratories should also be aware of the features and limitations of various probabilistic genotyping programs and the impact that those items will have on the validation process.” (p. 3)

• “…prerequisite studies may be required to, for example, establish parameters for allele drop-out and drop-in, stutter expectations, peak height variation, and the number of contributors to a mixture.” (p. 3)
Preliminary Work Requested by the SWGDAM 2015 PGS Validation Guidelines

• “Each laboratory seeking to evaluate a probabilistic genotyping system must determine which validation studies are relevant to the methodology, in the context of its application, to demonstrate the reliability of the system and any potential limitations.” (p. 3)

• “The laboratory must determine the number of samples required to satisfy each guideline and may determine that a study is not necessary.” (p. 3)

• Don’t treat your validation plan as a checklist of tasks
• Think about why each experiment is to be performed and what you hope to learn from it
8.8.2 New software or new modules of existing software that are used as a component of instrumentation, for the analysis and/or interpretation of DNA data, or for statistical calculations shall be subject to internal validation specific to the laboratory’s intended use prior to implementation in forensic DNA analysis.

8.8.2.1 Internal software validation studies for new software or new modules of existing software used as a component of instrumentation shall include functional testing and reliability testing.

8.8.2.2 Internal software validation studies for new software or new modules of existing software for the analysis and/or interpretation of DNA data shall include functional testing, reliability testing, and, as applicable, precision and accuracy studies, sensitivity, and specificity studies.

8.8.2.3 Internal software validation studies for new software or new modules of existing software for statistical calculations shall include functional testing, reliability testing, and, as applicable, precision and accuracy studies.

8.8.2.4 Software that does not impact the analytical process, interpretation, or statistical calculations shall require at a minimum, a functional test.
(4.1.2) Developmental validation studies shall address accuracy, sensitivity, specificity, and precision and include case-type profiles of known composition.

(4.1.3) Internal validation studies shall address...

- **accuracy**
 - establish that PGS calculations are correctly executed

- **sensitivity (with Hp true, LR>1)**
 - assess the ability of PGS to support the presence of a true known contributor

- **specificity (with Hd true, LR<1)**
 - assess the ability of PGS to support the absence of true non-contributors

- **precision**
 - evaluate variation in LRs calculated from repeated analyses of same input data using the same set of conditions/parameters

Case-type profiles: data exhibiting features that are representative of a plausible range of casework conditions... [including] masked/shared alleles and stutter, degradation (including different degradation levels for different contributors to a mixture), allele and locus drop-out, and PCR inhibition.
Developing an Internal Validation Plan and Testing Samples
ISFG DNA Commission (Coble et al. 2016)

Recommendation #10:
Before initiating the validation of a software program, the laboratory should develop a documented validation plan. The software should have a completed and up to date developmental validation along with other supporting materials such as publications describing the models, propositions and parameters used by the software and a user's manual.

Recommendation #11:
The laboratory should test the software on representative data generated in-house with the reagents, detection instrumentation, and analysis software, used for casework. If a laboratory employs variable DNA typing conditions (e.g., within variation in the amplification and/or electrophoresis conditions to increase or decrease the sensitivity of detection of alleles and/or artifacts), then these types of profiles should also be tested as part of the internal validation plan.

Recommendation #12:
The laboratory should consider the range of samples expected to be analyzed in casework to define the scope of application of the software. Internal validation should address (1) true donors and non-donors and/or (2) related and unrelated individuals across a range of situations that span or exceed the complexity of the cases likely to be encountered in casework.
Recommendation #13:
The laboratory should determine whether the results produced by the software are consistent with the laboratory’s previously validated interpretation procedure if the data and/or method exist.

JMB Comments: Comparing new results back to results obtained with previous manual or software-aided interpretation is valuable to any validation study
• To assist in this comparison, have previously used DNA samples and data accessible and in a format that permits this comparison
Developing a Validation Plan

1. **Define** what aspects of DNA testing process you would like to address in your validation study (e.g., bringing a PGS system online for complex DNA mixtures)

2. **Learn** from previous work
 - Examine available published articles describing developmental validation studies, PGS models and parameters
 - Examine available internal validation studies and talk to others who have performed similar validation studies to learn challenges faced

3. **Decide** on the scope of what “factor space” you want to cover
 - SWGDAM 2016 Validation Guidelines: (4.4) Mixed DNA samples that are representative of those typically encountered by the testing laboratory should be evaluated

4. **Design** experiments to cover this factor space
 - Decide on specific DNA samples and conditions to test

How do you define what is “representative” of casework encountered in your laboratory?
Considerations with DNA Samples Used for Testing

Remember that the goal is to represent the range and difficulty of casework samples in validation studies performed → sample selection is key

• Ideally, you want to have sufficient quantities of stable samples to enable testing over time and across software versions as updates are adopted in the future

1. Use of staff DNA samples?
 • May require Institutional Review Board (IRB) approval for human subjects testing
 • Potential privacy concerns for the staff with their genotypes being part of validation data that can be shared (ideally, you want to be able to share your data for independent review)

2. Use of common control samples, such as 9947A and 9948?
 • Limited genotype combinations leading to narrow coverage of your desired factor space; discussed in J.M. Butler (2015) Adv. Topics in Forensic DNA Typing: Interpretation, pp. 164-165
 • Harder to effectively measure allele drop-out across STR loci because many of the loci are homozygous, which also limits heterozygote balance studies

3. Purchase of anonymous blood samples from a blood bank?
 • Will require extraction and preliminary testing to determine STR genotypes
 • An important benefit is that large quantities are available for future studies
Experimental Design and Factor Space Coverage
How to Perform Validation Studies from an Analytical Chemistry Perspective

• Decide on analytical requirements
 • Sensitivity, resolution, precision, etc.

• Plan a suite of experiments

• Carry out experiments

• Use data to assess fitness for purpose

• Produce a statement of validation
 • Scope of the method

Assumptions When Performing Validation

• The equipment on which the work is being done is broadly suited to the application. It is clean, well-maintained and within calibration.

• The staff carrying out the validation are competent in the type of work involved.

• There are no unusual fluctuations in laboratory conditions and there is no work being carried out in the immediate vicinity that is likely to cause interferences.

• The samples being used in the validation study are known to be sufficiently stable.

Tools of Method Validation

- Standard samples
 - positive controls
 - NIST SRMs
- Blanks
- Reference materials prepared in-house and spikes
- Existing samples
- Statistics
- Common sense

Some Thoughts on Experimental Design

• **Purpose and Scope:** Consider the question you are asking and decide what you are going to evaluate

• **Parameters:** Consider carefully the parameters you would like to study and how you can isolate the variables you are trying to examine

• **Coverage:** Explore the “factor space” needed (e.g., to understand the limitations of a method, you will need to go the “edges” and beyond)

• **Replication:** Repeatability (under similar conditions) and reproducibility (under different conditions) need to be understood
PGS DNA Mixture Interpretation

Mixture occurs (cells from multiple contributors co-deposited)

Number of contributors estimated (assumption made based on examining EPG data)

Propositions set (H1 and H2 based on number of contributors, case-specific situation)

Reference profiles provided (Known profiles needed)

Allele frequencies provided (from relevant populations)

Sample collected (recovery via CSI swab)

Data obtained (extraction, quant, PCR, EPG with STR profile)

Level of input data determined by lab (via analytical threshold)

Defined by validation studies

Probabilistic Genotyping Software (PGS) System

PGS model parameters applied (peak height, stutter%, mixture ratio, degradation, prob. drop-out, prob. drop-in)

List of weighted genotype possibilities produced from mixture deconvolution (usually MCMC with continuous PGS)

Likelihood Ratio (LR) assigned (based on propositions, reference profiles, and pop. data)

Biological models

Computer algorithm

Statistical models

Testimony offered (LR verbal equivalent provided)

Report generated (LR verbal equivalent provided)

Trier-of-fact decision made (considering DNA results with other info)

Factors Influencing LR Values Determined by PGS Systems

<table>
<thead>
<tr>
<th>Input</th>
<th>By Who</th>
<th>Impact/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling choices</td>
<td>PGS system architect(s)</td>
<td>Peak height ratio variance allowed, how potential degradation is modeled, etc.</td>
</tr>
<tr>
<td>Data input choices</td>
<td>DNA analyst</td>
<td>Defining alleles (setting analytical threshold), categorizing artifacts from alleles (e.g., stutter)</td>
</tr>
<tr>
<td>Proposition choices and assumptions</td>
<td>DNA analyst</td>
<td>Use of unrelated individuals vs. relatives or conditioning on a victim’s profile with an intimate sample</td>
</tr>
<tr>
<td>Population database choices</td>
<td>DNA analyst/laboratory policy</td>
<td>Different allele frequency values will influence LR values</td>
</tr>
<tr>
<td>Reporting statistic choices</td>
<td>DNA analyst/laboratory policy</td>
<td>Handling sampling variation (e.g., HPD*)</td>
</tr>
</tbody>
</table>

*HPD=highest posterior density-defines interval most likely to contain the true value
Some Factors That May Affect Reliability of an LR System

1. Sample
 a) Sample amount (contributor template amounts)
 b) Sample quality (degradation level)

2. Labs
 a) Kits used
 b) Equipment Used
 c) Number of PCR cycles
 d) Analyst
 e) Choice of Analytical Threshold (AT)

3. Probabilistic Genotyping (PG) Model
 a) Choice of model
 b) Choice of laboratory specific parameters for use in the PG model
 c) Propositions Chosen (H_p and H_d)

4. Software Implementing the PG Model
 a) Choice of numerical methods for computing LR (MCMC, Numerical Integration)
 b) Choice of number of iterations OR numerical integration parameters (e.g. grid size)
“Factor Space” in DNA Mixture Studies

1. **Total DNA amount** (e.g., 1 ng or 100 pg)
 - Consider lowest amount of DNA in a minor contributor (be informed by sensitivity studies)

2. **Sample quality** (DNA degradation or PCR inhibition)

3. **Number of contributors**
 - *Factor space expands rapidly as the number of contributors increases*
 - Sample types can differ, e.g., 2-person [sexual assault] or >4-person [touch evidence]

4. **Degree of allele overlap** across mixture components
 - Minor contributor alleles in stutter positions of major contributor alleles
 - Mixtures involved multiple related individuals are expected to possess high allele sharing
 - *Rarely discussed in published studies or sample design (yet known to impact deconvolution)*

5. **Contributor component ratios** (e.g., 10:1 or 1:1:1)
 - Rarely is interpretation performed beyond a 10:1 or 20:1 mixture
 - General kinds: balanced (≈1:1:1), major/minor (≈7:2:1), extreme (≈>20:1:1)

Lynch & Cotton (2018) Determination of the possible number of genotypes which can contribute to DNA mixtures… FSI Genetics 37: 235-240
An Example Experimental Plan for Internal Validation
provided by Bright & Coble in their new book

<table>
<thead>
<tr>
<th>Number of Contributors</th>
<th>Range of Mixture Ratios</th>
<th>Total Template Amplified</th>
<th>DNA Amount of Smallest Contributor</th>
<th>Total Number of Mixtures Examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1:1, 5:1, 10:1, 20:1, 100:1</td>
<td>1.0 & 0.5 ng</td>
<td>6.25 pg</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1:1:1, 10:5:1, 3:2:1, 20:5:1</td>
<td>1.0 & 0.5 ng</td>
<td>6.25 pg</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1:1:1:1, 10:5:2:1, 4:3:2:1, 8:4:1:1</td>
<td>1.0 & 0.5 ng</td>
<td>6.25 pg</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>1:1:1:1:1, 10:5:3:2:1, 6:3:2:1:1, 5:4:3:2:1</td>
<td>1.0 & 0.5 ng</td>
<td>6.25 pg</td>
<td>8</td>
</tr>
</tbody>
</table>

This testing plan does not consider the degree of allele sharing, alleles in stutter positions, degradation/inhibition/allele drop-out, or mixtures with relatives.

34 amplifications, if done in duplicate, then 68 samples would be generated.
An assessment of the performance of the probabilistic genotyping software EuroForMix: Trends in likelihood ratios and analysis of Type I & II errors

Corina C.G. Benschop*, Alwart Nijveld, Francisca E. Duijs, Titia Sijen

Netherlands Forensic Institute, Division of Biological Traces, Laan van Ypenburg 6, 2497GB The Hague, the Netherlands

Also discussed in Chapter 9 “Validation” (pp. 277-308) of Peter Gill, Øyvind Bleka, Oskar Hansson, Corina Benschop and Hinda Haned (2020) Forensic Practitioner’s Guide to the Interpretation of Complex DNA Profiles (Elsevier Academic Press, San Diego)
Multiple Donor Combinations Used to Create Different Degrees of Allele Sharing

Specific genotypes can be kept anonymous and still differentiate various degrees of allele sharing

<table>
<thead>
<tr>
<th>Dataset number</th>
<th>Type of dataset</th>
<th>Number of contributors</th>
<th>Donor combinations per dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High allele sharing</td>
<td>a:b</td>
<td>a:b:c</td>
</tr>
<tr>
<td>2</td>
<td>Low allele sharing</td>
<td>f:g</td>
<td>f:g:h</td>
</tr>
<tr>
<td>3</td>
<td>Random</td>
<td>k:l</td>
<td>k:l:k</td>
</tr>
<tr>
<td>6</td>
<td>Random</td>
<td>z:aa</td>
<td>z:aa:ab</td>
</tr>
</tbody>
</table>

Different Categories of Mixture Types Were Studied in Exploring the DNA Mixture Factor Space

Table 2: Mixture proportions and amounts of DNA used per donor to create a total of 20 different mixtures per dataset.

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Number of contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Picograms DNA per contributor</td>
<td></td>
</tr>
<tr>
<td>B: major 10x more than any minor</td>
<td>300:30</td>
</tr>
<tr>
<td>C: 2 majors with equal amount</td>
<td>150:150</td>
</tr>
<tr>
<td>D: major 5 to 2.5x more than minors</td>
<td>150:30</td>
</tr>
<tr>
<td>E: major 20 to 10x more than minors</td>
<td>600:30</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

“Factor Space” in DNA Mixture Studies
1. Total DNA amount
2. Sample quality
3. Number of contributors
4. Degree of allele overlap
5. Contributor component ratios

<table>
<thead>
<tr>
<th>PGS System (Version)</th>
<th># of Samples</th>
<th># of Contributors</th>
<th># of Replicates</th>
<th>DNA Amount (pg)</th>
<th>Mixture Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>EuroForMix (Various: v1.9.1 up to v1.11.4)</td>
<td>5 HAS, 5 LAS, 20 RAS</td>
<td>2</td>
<td>3</td>
<td>300:150</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300:30</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:150</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:30</td>
<td>5:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600:30</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>5 HAS, 5 LAS, 20 RAS</td>
<td>3</td>
<td>3</td>
<td>300:150:150</td>
<td>2:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300:30:30</td>
<td>10:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:150:60</td>
<td>2.5:2.5:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:30:60</td>
<td>5:1:2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600:30:60</td>
<td>20:1:2</td>
</tr>
<tr>
<td></td>
<td>5 HAS, 5 LAS, 20 RAS</td>
<td>4</td>
<td>3</td>
<td>300:150:150:150</td>
<td>2:1:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300:30:30:30</td>
<td>10:1:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:150:60:60</td>
<td>2.5:2.5:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:30:60:30</td>
<td>5:1:2:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600:30:60:30</td>
<td>20:1:2:1</td>
</tr>
<tr>
<td></td>
<td>5 HAS, 5 LAS, 20 RAS</td>
<td>5</td>
<td>3</td>
<td>300:150:150:150:150</td>
<td>2:1:1:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300:30:30:30:30</td>
<td>10:1:1:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:150:60:60:60</td>
<td>2.5:2.5:1:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150:30:60:30:30</td>
<td>5:1:2:1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600:30:60:30:30</td>
<td>20:1:2:1:1</td>
</tr>
</tbody>
</table>

Our Goal for This Workshop

To Review Important Principles to Aid Understanding of Validation…

Key Aspects of Validation:

• How to Design Validation Studies
• How to Perform Validation Studies
• How to Describe Validation Studies
• How to Utilize Validation Data

In Module 4, Hari will examine some data examples for reliability assessment of LR results produced by PGS
Thank you for your attention!

Points of view are the presenters and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Contact Information

John M. Butler
john.butler@nist.gov

Hari K. Iyer
hariharan.iyer@nist.gov
Validation Principles, Practices, Parameters, Performance Evaluations, and Protocols

Reliability Assessment of LR Systems: Data Examples

Module 4

Hari K. Iyer
National Institute of Standards and Technology
I would like to thank Steve Lund, William Guthrie, Antonio Possolo, Adam Pintar, Jan Hannig, and other NIST colleagues, for many ongoing, meaningful discussions on foundational concepts in statistics.

I wish to also thank John Butler, Katherine Gettings, Niki Osborne, Rich Press, Sarah Riman, Melissa Taylor, Pete Vallone, and Sheila Willis – and the DNA Mixture Resource Group, for educating me on DNA mixture interpretation and/or related issues.

Points of view are of the presenters and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial entities are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the entities identified are necessarily the best available for the purpose.
Topics for Discussion

• Validation studies for assessing LR system reliability
• Expected behavior of reliable LR systems
• Diagnostic checks of LR system performance
• Statistical tools for assessing discrimination power of LR systems
• Statistical tools for assessing calibration accuracy of LR systems
• Study design and sample size issues (briefly)
• Conclusions
Before using an LR system in casework, labs conduct validation studies to assess LR system reliability.

The LR System includes:
- Measurement step that produces an EPG
- Analyst interpretation of the EPG for preparing input to the software
- The PG model and the software that implements the model calculations
- Deciding if the results make sense and what LR to report.

Does the system produce results that are consistent with what one would expect (since ground truth is known)?

What are these expectations?
Expected Behavior of LR Systems

- We expect LR for known contributors to be > 1.
 If a known contributor LR is less than 1 we say that this is a misleading LR.
 Sometimes labeled type-I error (Benschop, et. al, 2019)

- We expect LR for known non-contributors to be < 1.
 If a known non-contributor LR is greater than 1 we say that this is a misleading LR.
 Sometimes labeled type-II error (Benschop, et. al, 2019)

Well designed validation studies can provide information that can help assess the chances of obtaining misleading LRs in casework.
• As information content increases, larger LR values are expected for true contributors and smaller LR values are expected for non-contributors.

Fig. 5. Violin plot of $\log_{10}(LR)$ versus AFH for apparent four contributor mixtures.
• **If the model is correct**

(a) Average of non-contributor LRs is expected to be 1. *(Often attributed to Alan Turing).*

(b) The chance of a non-contributor giving an LR=x or greater should be less than or equal to 1/x.

(Markov-Chebyshev Inequality; sometimes also credited to Alan Turing).

If \(N \) non-contributor tests are conducted, we expect the number of LRs that equal or exceed \(x \) to be at most \(N/x \).

In \(N=10,000 \) non-contributor tests, we expect the number of LRs that equal or exceed 10,000 to be at most 1; the number of LRs that equal or exceed 1000 to be at most \(N/1000 = 10000/1000 = 10 \).
Conditions Necessary But Not Sufficient

• If the empirical results are not consistent with these expectations one might conclude that the model needs to be improved.

• If the empirical results ARE consistent with these expectations one CANNOT conclude that the model is correct. That requires more work.
If you multiply two odd integers the resulting integer will also be odd. This observation can help check accuracy of calculations.

- 709463783 x 184592267 = 130 961 528 058 366 162 (is wrong)
- 709463783 x 184592267 = 130 761 528 058 366 061 (is this correct ?)
- 709463783 x 184592267 = 130 961 528 058 366 061 (is this correct ?)

“Passing” the Turing test is NECESSARY (but not SUFFICIENT)

“Passing” the Turing test DOES NOT demonstrate RELIABILITY

However, some individuals may be convinced of system reliability based on simple diagnostic checks. Others may not be convinced without more rigorous testing.
Main Criteria for Reliability

- Distribution of true contributor LRs and the distribution of non-contributor LRs should be well-separated. *(Discrimination power)*

- Reported LRs should be consistent with empirically observed behavior of frequencies of contributor and noncontributor LRs. *(Calibration accuracy)*
PROVEDIt data

- 4P mixtures
- 1:1:1:1
- Total DNA amount < 125 pg
- Degraded
- Total of 63 mixtures
- 63 Known Contributor Tests & 63 Non-contributor Tests

3500xL, GlobalFiler, 29 cycles, 15 sec Injection time
Used ‘filtered’ samples (artifacts already removed)

Noncontributor profiles randomly selected from the NIST 1036 sample database for each of the 63 samples

This resulted in 63 true contributor LRs & 63 non-contributor LRs
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non</td>
<td>Contributors</td>
<td>Contributors</td>
</tr>
<tr>
<td>(out of 63)</td>
<td>(out of 63)</td>
<td>(out of 63)</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t Non Contributors (out of 63)</th>
<th>LR > t Contributors (out of 63)</th>
<th>LR < t Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

<table>
<thead>
<tr>
<th>t</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

LR > t
LR < t

t equal to
Non Contributors (out of 63)
Contributors (out of 63)
Contributors (out of 63)

<table>
<thead>
<tr>
<th>t</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non</td>
<td>Contributors</td>
</tr>
<tr>
<td></td>
<td>Contributors (out of 63)</td>
<td>(out of 63)</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

LR > t

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROVEIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

<table>
<thead>
<tr>
<th>t</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
<td>14</td>
</tr>
</tbody>
</table>
No. of LRs Exceeding $LR = t$

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non Contributors (out of 63)</td>
<td>Contributors (out of 63)</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
No. of LRs Exceeding $LR = t$

<table>
<thead>
<tr>
<th>t</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non</td>
<td>Contributors (out of 63)</td>
<td>Contributors (out of 63)</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$t = \text{Infinity}$
No. of LRs Exceeding $LR = t$

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
<td>14</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>
No. of LRs Exceeding $LR = t$

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
<td>14</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>
No. of LRs Exceeding $LR = t$

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Contributors (out of 63)</td>
<td>Contributors (out of 63)</td>
<td>Contributors (out of 63)</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LR > t
LR < t

t \text{ equal to}
Non
Contributors
(out of 63)
Contributors
(out of 63)
Contributors
(out of 63)
1 37 63 0
2 9 63 0
5 6 61 2
10 3 60 3
100 1 55 8
1000 0 49 14
Infinity 0 0 63

LR > t

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = \infty</td>
<td>0 0 63</td>
<td></td>
</tr>
<tr>
<td>t = 1000</td>
<td>0 49 14</td>
<td></td>
</tr>
<tr>
<td>t = 100</td>
<td>1 55 8</td>
<td></td>
</tr>
<tr>
<td>t = 5</td>
<td>6 61 2</td>
<td></td>
</tr>
<tr>
<td>t = 2</td>
<td>9 63 0</td>
<td></td>
</tr>
<tr>
<td>t = 1</td>
<td>37 63 0</td>
<td></td>
</tr>
</tbody>
</table>

No. of LRs Exceeding LR = t
The table shows the number of non-contributors and contributors exceeding LR = t for different values of t:

- For LR > t:
 - t = 1: 37 non-contributors, 63 contributors, 0 contributors
 - t = 2: 9 non-contributors, 63 contributors, 0 contributors
 - t = 5: 6 non-contributors, 61 contributors, 2 contributors
 - t = 10: 3 non-contributors, 60 contributors, 3 contributors
 - t = 100: 1 non-contributor, 55 contributors, 8 contributors
 - t = 1000: 0 non-contributors, 49 contributors, 14 contributors
 - t = Infinity: 0 non-contributors, 0 contributors, 63 contributors

- For LR < t:

- The graph illustrates the distribution of non-contributors and contributors exceeding LR = t for different values of t.

- The values are marked on the graph with corresponding points.
LR > t
LR < t

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
<td>14</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>
No. of LRs Exceeding LR = t

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>

Graph

- **t = 0**: 63 Non-Contributors, 63 Contributors
- **t = 1**: 37 Non-Contributors, 63 Contributors
- **t = 2**: 9 Non-Contributors, 63 Contributors
- **t = 5**: 6 Non-Contributors, 61 Contributors
- **t = 10**: 3 Non-Contributors, 60 Contributors
- **t = 100**: 1 Non-Contributor, 55 Contributors
- **t = 1000**: 0 Non-Contributors, 49 Contributors
- **t = Infinity**: 0 Non-Contributors, 63 Contributors

LR = *t*
<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

 LR > t vs LR < t
No. of LRs Exceeding LR = t

<table>
<thead>
<tr>
<th>t equal to</th>
<th>LR > t</th>
<th>LR < t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non Contributors (out of 63)</td>
<td>Contributors (out of 63)</td>
</tr>
<tr>
<td>0</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Infinity</td>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>
Percent LRs > t

Percent LRs < t

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>58.7</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>14.3</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>9.5</td>
<td>96.8</td>
<td>3.2</td>
</tr>
<tr>
<td>10</td>
<td>4.8</td>
<td>95.2</td>
<td>4.8</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>87.3</td>
<td>12.7</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
<td>77.8</td>
<td>22.2</td>
</tr>
<tr>
<td>Infinity</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Percent LRs $< t$

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Non Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
<th>Contributors (out of 63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>58.7</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>14.3</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>9.5</td>
<td>96.8</td>
<td>3.2</td>
</tr>
<tr>
<td>10</td>
<td>4.8</td>
<td>95.2</td>
<td>4.8</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>87.3</td>
<td>12.7</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
<td>77.8</td>
<td>22.2</td>
</tr>
<tr>
<td>Infinity</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Percent LRs $> t$

Receiver Operating Characteristic (ROC) Plot

- **Percent False Positive**
- **Percent True Positive**

Figure: ROC PLOT

Table:

<table>
<thead>
<tr>
<th>t equal to</th>
<th>Percent LRs $> t$</th>
<th>Percent LRs $< t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>58.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>14.3</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>9.5</td>
<td>3.2</td>
</tr>
<tr>
<td>10</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>12.7</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
<td>22.2</td>
</tr>
<tr>
<td>Infinity</td>
<td>0.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1
PROVEDIt Data, 4P Mixtures
Degraded, Total Amount < 125 pg, Ratio 1:1:1:1

\[t = 182 \]
LR = 10

PROVEDIt Data, 4P Mixtures
Total DNA Amount = 300 pg

Distribution of Log10(LR)
PROVEDIt Data, 4P Mixtures, Amount = 300 pg
LR System appears to better discriminate between Hp and Hd for samples with 300 pg total DNA than for samples with less than 125 pg total DNA.
Fig. 2. Receiver operating characteristic (ROC) plot where the rate of false positives (FP) (along horizontal axis) and true positives (TP) (along vertical axis) are plotted as a function of LR thresholds. The plot shows the results for the maximum likelihood estimation method (MLE) and the conservative method (CONS) for both LRmix and EuroForMix. The points on the curves show the FP and TP rates for different LR thresholds.
6 Performance of likelihood ratio methods

6.2 Empirical measurement of the performance of likelihood ratios

6.5 Accuracy equals discriminating power plus calibration:
Empirical cross-entropy plots

- the discriminating power is poor. This means that the validation set of \(LR \) values is poor at separating \(LR \) values for which \(H_1 \) is true from \(LR \) values for which \(H_2 \) is true.
- the calibration is poor. This means that the \(LR \) values provide poor probabilistic measures of the value of the evidence. Even if the \(LR \) values have high discriminating power, poor calibration can degrade the accuracy considerably.

An R-package called comparison can be used to apply their method

David Lucy, James Curran, Agnieszka Martyna
1964–2018
Calibration Accuracy

ECE Plot for Example Data
PROVEDit, 1:1:1:1, degraded, Amount < 125 pg (n = 63 in each group)

Inputs to the R function:
- True Contributor LRs
- Non-contributor LRs

Output:
- Empirical cross entropy plot
ECE Plot for PROVEDIt Data
All 4P Mixtures (n = 263 in each group)
Interval Specific Calibration Discrepancy Plot

PROVEDIt Data: All 4P Mixtures
263 Noncontributor LR\s, 263 Contributor LR\s
Interval Specific Calibration Discrepancy Plot

PROVEDIt Data: All 4P Mixtures
263 Noncontributor LRs, 263 Contributor LRss

Are reported likelihood ratios well calibrated?
John Buckleton1,2, Maarten Kruijver2, James Curran1, and Jo-Anne Bright2

https://figshare.com/articles/Calibration_of_STRmix_LRs_following_the_method_of_Hannig_et_al_/12324011/1
Sufficient samples shall be collected per test subject so that the total number of attempts exceeds that required by the **Rule of 3** or **Rule of 30** as appropriate.

- What is the **RULE OF 3** and how is it applied when determining sample sizes?

- What is the **RULE OF 30** and how is it applied when determining sample sizes?
Suppose \(p \) = probability of an event of interest.

In \(N \) independent trials, the event of interest never occurred.

Then we can be 95\% confident that the value of \(p \) is at most \(\frac{3}{N} \).

Illustration:

Event of interest: Non-contributor LR exceeding 5,000

Suppose no value of LR exceeded 5,000 in 1000 independent non-contributor tests. (So \(N=1000 \))

We can be 95\% confident that the chances of a noncontributor test resulting in an LR > 5000 will not exceed \(\frac{3}{N} = \frac{3}{1000} = 0.3\% \)

Turing’s theorem says this probability should be less than or equal to \(\frac{1}{5000} = 0.02\% \)
2.5.2.2. *The rule of 30*. In determining the required size of a corpus, a helpful rule is what might be called “*the rule of 30*”. This comes directly from the binomial distribution, assuming independent trials. Here is the rule:

To be 90% confident that the true error rate is within ±30% of the observed error rate, there must be at least 30 errors.
1. Expected behavior of LR systems (when model is correct)

2. Comparing validation study results with expectations – diagnostic checks

3. Diagnostic checks are NECESSARY to demonstrate reliability but may not be sufficient

4. Use of ROC (Receiver Operating Characteristic) plots to examine discrimination power and to compare discrimination power between two or more conditions (or two or more systems)

5. Main requirements for reliability: Discrimination power and Calibration Accuracy

6. Empirical Cross Entropy Plots and Interval Specific Calibration Discrepancy Plots

7. Rule of 3 and Rule of 30 (ISO 19795-1)
In Module 5
John will talk about
Summarizing, Using, &
Communicating Validation Data
Validation Principles, Practices, Parameters, Performance Evaluations, and Protocols

Summarizing, Using, & Communicating Validation Data

Module 5

John M. Butler
National Institute of Standards and Technology
Disclaimers

Points of view are those of the presenter and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Identification does not imply endorsement
Certain commercial entities are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the entities identified are necessarily the best available for the purpose.
Module 5 (John)

• Summarizing Validation Data
 • Considering layout and what data to share to enable independent review of PGS data

• Using Validation Data to Inform Your Protocols
 • Establishing limits and a complexity threshold

• Communicating Validation Data and Meaning
 • Considering what questions are you answering with your data
 • Looking beyond PGS to larger issues with DNA mixture interpretation

• Some Final Thoughts
Summarizing Validation Data
Desired Performance with a Mixture Interpretation Method

Desirable Features

1. Discrimination capacity (separation of known contributors from known non-contributors)
2. Calibration accuracy (accuracy of a specific LR value)

LR values vary based on amount of information available – with less information, a lower LR value is obtained with a well-calibrated system.
A Publicly Available PGS Internal Validation Summary

From page 11 of the summary report:

• “At high template STRmix correctly and reliably gave a high LR for true contributors and a low LR for false contributors.”

• “At low template or high contributor number STRmix correctly and reliably reported that the analysis of the sample tends towards uninformative or inconclusive.”

If this is all we have, do these statements and any provided data summaries assist in understanding limitations of the system and where potential risks may exist?

https://dfs.dc.gov/sites/default/files/dc/sites/dfs/page_content/attachments/STRmix%20v2.4%20Validation%20Report.pdf
Correlation between Internal Validation Summary Topics and SWGDAM 2015 PGS Validation Guidelines

Showing where to find relevant information in an internal validation summary is helpful

- Analysts and auditors should avoid using this as a checklist and seek to understand how performance metrics have been demonstrated

https://dfs.dc.gov/sites/default/files/dc/sites/dfs/page_content/attachments/STRmix%20v2.4%20Validation%20Report.pdf (p. 36)
An Example of Information Provided in an Internal Validation Summary

Page 7 of 43: “These profiles represent typical profiles encountered by the laboratory. The **profiles are of varying DNA quantity and mixture proportions**. The contributors include homozygote and heterozygote alleles and **there is varying amounts of allele sharing across the different loci** ([SWGDAM 2015 guidelines] standard 4.1.6.5). Given the template amounts, allele and/or locus dropout was expected to occur within the profiles containing the lower DNA amounts ([SWGDAM 2015] standard 4.1.7.1).

Page 32 of 43: “Section D and E results demonstrate that **there may be overlap in likelihood ratios between true contributors and non-contributors below LR=100** (i.e., low true inclusions and high false inclusions) for three, four, and five person mixtures. Based on this information, LRs between 1 and 100 will be designated “Uninformative” for casework samples in the Forensic Biology unit at DFS.”

https://dfs.dc.gov/sites/default/files/dc/sites/dfs/page_content/attachments/STRmix%20v2.4%20Validation%20Report.pdf
An Analysis of Factor Space Coverage for an Internal Validation
DC-DFS, STRmix v2.4, GlobalFiler (29 cycles), ABI 3500

<table>
<thead>
<tr>
<th># contributors</th>
<th># samples</th>
<th>DNA template amounts (pg)</th>
<th>Mixture ratios (deciphered from Appendix 3)</th>
<th>Degree of allele sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-source</td>
<td>32</td>
<td>high amount of DNA (3000 pg), 250, 188, 125, 94, 63, 47, 31, 23, 15, 12, 6 pg</td>
<td>N/A</td>
<td>No information</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>Not apparent from Appendix 3</td>
<td>25:1, 20:1, 15:1, 10:1, 7:1, 5:1, 3:1, 2:1, 1:1</td>
<td>1:1, 1:2, 1:3, 1:5, 1:7, 1:10, 1:15, 1:20, 1:25</td>
</tr>
<tr>
<td>Various</td>
<td>10</td>
<td></td>
<td></td>
<td>No information</td>
</tr>
</tbody>
</table>

NIST Summary of Factor Space Coverage from this Internal Validation Summary

Summary page 7 of 43:

“Each profile was interpreted in STRmix and compared to the known contributors and 134 known non-contributors…”

https://dfs.dc.gov/sites/default/files/dc/sites/dfs/page_content/attachments/STRmix%20v2.4%20Validation%20Report.pdf
5 Person Mixture Plot of Average Peak Height vs Log(LR)

Specificity Testing
Some non-contributors possess LR > 1 with low-level DNA quantities (average peak heights < 400 RFU)
Perhaps with LR values of ~10,000 or more?

No correlation between data points and samples used to generate them making it challenging to understand what aspect of the factor space is being covered

Blue circles = LR assigned with known true contributors
• 20x5 tested?

Orange circles = LR assigned with known non-contributors
• 134x100 tested?

20 samples were tested with various mixture ratios (10 combinations tested in duplicate):

https://dfs.dc.gov/sites/default/files/dc/sites/dfs/page_content/attachments/STRmix%20v2.4%20Validation%20Report.pdf (p. 43)
What is Needed to Enable an Independent Review?

A. LR values (PGS LR assignments given specific propositions) for each data point

B. Factor space coverage details

1. Sample ID
2. Sample Number (if a replicate)
3. Number of Contributors
4. Target Template Amounts
5. Degradation Status
6. NOC used for Analysis
7. H_1 (Hp) True? Yes/No
8. POI position (if H_1 True)
9. Reported log$_{10}$(LR) by PGS system
10. Mixture EPG results*
11. POI profile*
12. Known Contributor-A profile*
13. Known Contributor-B profile*
14. Etc. for additional known contributors*

* if privacy of the profile genotypes is a concern, then alleles in an algebraic format could be used as described previously (Gill et al. 1998 FSI 91:41-53). For example, the letters A, B, C, D, etc. can be used in place of actual alleles at the various loci
Using Validation Data to Inform Your Protocols
Validation Data Should Inform Laboratory Protocols

Generate Validation Data → Create Protocols → Verify Protocols

Additional Testing across a range of sample types
From Charlotte Word’s August 5, 2020 Webinar

STANDARDS 20 & 40 STRUCTURE

1. **Validation Studies for Interpretation of Mixed DNA**
 - Standard 20 Requirement 4.2

2. **Interpretation and Comparison Protocol Development**
 - Standard 20 Requirement 4.3
 - Standard 40 Whole Document

3. **Verification of the Protocol & Consistency with Analysts**
 - Standard 20 Requirement 4.4

7.2.2 Validation of methods

7.2.2.1.1 The laboratory shall have a procedure for method validation that:
 a) includes the associated data analysis and interpretation;
 b) establishes the data required to report a result, opinion, or interpretation; and
 c) identifies limitations of the method, reported results, opinions, and interpretations.

7.2.2.2 NOTE Changes to associated data analysis and interpretation are considered changes to a validated method.
Setting Limits \rightarrow A Complexity Threshold

A COMPLEXITY THRESHOLD?

Some DNA mixtures will be too complex to solve. Laboratories may benefit from developing criteria for when to stop working on a sample or on a case based on a preliminary analysis of samples received. This might be termed a “complexity threshold” (Rudin & Inman 2012). One idea for creating a complexity threshold is the use of receiver operator characteristics (ROC) curves that correlate the number of false positives and false negatives under certain conditions (Gordon 2012, Grgicak 2012). For example, simulations can be run and visualized via ROC curves to determine how many non-concordant results (i.e., missing alleles in the evidence sample) are permitted before there is a chosen probability of falsely including an innocent person (Gordon 2012).

In one of their complex mixture studies, NFU proposed to develop criteria for assessing the peak heights, position of allele calls (such as in potential stutter positions), the consistency of allele calls among replicates, and a maximum number of allele drop-outs that could be considered for non-concordance (Benschop et al. 2012). Presumably studying the variability of these parameters in validation studies with known mixture contributors could lead to an effective complexity threshold.

In April 2012, an international conference was held in Rome, Italy, entitled “The hidden side of DNA profiles: artifacts, errors and uncertain evidence” (Pascali & Prinz 2012). Peter Schneider, a forensic DNA researcher from Cologne, Germany, shared his thoughts on what to do when evidence becomes too complex to reliably interpret: “If you cannot explain your evidence to someone that is not from the field (like a judge) — and you need a lot of technical excuses to report something — then the result is not good. You should leave it on your desk and not take it to court. This is a very common sense approach to this problem” (Rome 2012).
Your Complexity Threshold is Related to Your Acceptable Degree of Reliability

Communicating Validation Data
Making Sense of Forensic Genetics (2017)

- Developed by European Forensic Genetics Network of Excellence (EuroForGen-NoE) and published with Sense about Science

- *Final point made:* “As DNA profiling continues to grow more sensitive, and it is used in more investigations, the need for accurate communication between scientists and nonscientists only grows - both to ensure that their expectations of the technology are realistic, and its limits are properly understood…”
Know What Question You Are Trying to Answer

“…Focus on the relevant question. Many misleading statistical approaches [turn] out to be providing valid answers to the wrong questions.”

Recent ISFG DNA Commission Articles

DNA commission of the International society for forensic genetics: Assessing the value of forensic biological evidence - Guidelines highlighting the importance of propositions

Part I: evaluation of DNA profiling comparisons given (sub-) source propositions

Peter Gill, Tacha Hicks, John M. Butler, Ed Connolly, Leonor Gussmão, Bas Kokshoorn, Niels Morling, Roland van Oorschot, Walther Parson, Mechthild Prinz, Peter M. Schneider, Titia Sijen, Duncan Taylor

DNA commission of the International society for forensic genetics: Assessing the value of forensic biological evidence - Guidelines highlighting the importance of propositions. Part II: Evaluation of biological traces considering activity level propositions

Peter Gill, Tacha Hicks, John M. Butler, Ed Connolly, Leonor Gussmão, Bas Kokshoorn, Niels Morling, Roland van Oorschot, Walther Parson, Mechthild Prinz, Peter M. Schneider, Titia Sijen, Duncan Taylor

2018
- Difference between investigative and evaluative reporting is explained
- Common pitfalls of formulating propositions are discussed
- Challenges of low-level mixtures are discussed

2020
- Why, when and how to carry out evaluation given activity level propositions are addressed with examples
- Distinguishing between results, propositions and explanations
<table>
<thead>
<tr>
<th>Levels in Hierarchy of Propositions</th>
<th>Purpose</th>
<th>Issues & Questions Addressed</th>
<th>Results Used</th>
<th>Factors Considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-source</td>
<td>Investigation</td>
<td>Who could be the source of the DNA?</td>
<td>DNA profile</td>
<td>Occurrence of DNA profile genotypes in the relevant population; variability of results (e.g., presence or absence of alleles) assuming the DNA came from the POI</td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
<td>Is the DNA from the person of interest (POI)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Investigation</td>
<td>Who could be the source of the biological fluid?</td>
<td>DNA profile; biological fluid presumptive tests</td>
<td>(Sub-source factors) + presumptive test false positive/ false negative rates (e.g., cross-reactivity, etc.)</td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
<td>Is the biological fluid from the POI?</td>
<td>DNA profile; biological fluid presumptive tests</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Evaluation</td>
<td>Did the POI perform the given activity?</td>
<td>DNA profile; biological fluid presumptive tests; relative quantity of DNA; where DNA was recovered; existence of multiple samples</td>
<td>(Source factors) + DNA transfer, persistence, and recovery; DNA present for unknown reasons (i.e., background DNA)</td>
</tr>
</tbody>
</table>

This German group developed an open resource and Microsoft Access database of published research on DNA transfer (called "DNA-TrAC") – see Appendix A of their article.
Examined DNA mixtures from skin contact traces of DNA recovered from three surfaces of two types of firearms handled in four realistic, casework-relevant handling scenarios.
First Research Study of DNA Transfer on Firearms with Casework-Relevant Alternative Handling Scenarios

Each repeated three times with two different owner/shooter pairs.

Gosch et al. (2020) FSIG 48: 102355
Only Owner
(1st Handler)

Short Time 2nd Handler

Longer Time 2nd Handler

Short Time 2nd Handler (with Wipe)

Gosch et al. (2020) FSI Genetics 48: 102355
Some Final Thoughts
A Public Repository of Example Data is Desirable
ISFG DNA Commission (Coble et al. 2016)

Recommendation #16:
The DNA Commission encourages the forensic community to establish a public repository of typing results from adjudicated casework covering a wide range of kinship cases and mixture samples including different challenging scenarios like low-level mixtures and related contributors. The data need to be in a universal, useful file format. The repository should be governed by a neutral organization providing equal access to all interested international parties.

• …Meta-data associated with the submitted profiles should include relevant information such as the kit used, PCR cycle conditions, the separation polymer used, the CE system electrophoretic injection parameters, and any other relevant information about the sample.

An example is the PROVEDIt data set (https://lftdi.camden.rutgers.edu/provedit/files/):
“Utilization of published validation data increases efficiency through shared experiences…”
Learn from Previous Work (Internal Validation Studies)

Unfortunately, there are a limited number of PGS internal validation study summaries that are publicly available*

<table>
<thead>
<tr>
<th>Forensic Laboratory</th>
<th>Information Available and Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Justice DNA Laboratory</td>
<td>STRmix v2.06 (Identifiler Plus, ABI 3130/3500) https://epic.org/state-policy/foia/dna-software/EPIC-16-02-02-CalDOJ-FOIA-20160219-STRmix-V2.0.6-Validation-Summaries.pdf</td>
</tr>
</tbody>
</table>
| Erie County Central Police Services Forensic Laboratory (Buffalo, NY) | STRmix v2.3 (PowerPlex Fusion, ABI 3500) <https://johnbuckleton.files.wordpress.com/2016/09/strmix-implementation-and-internal-validation-erie-fusion.pdf>
| NYC OCME Forensic Biology Laboratory | STRmix v2.4 (Fusion, ABI 3130xl) <https://www1.nyc.gov/site/ocme/services/validation-summary.page> |
| Palm Beach County (FL) Sheriff’s Office | STRmix v2.4 (PowerPlex Fusion, ABI 3500xl) <http://www.pbso.org/qualtrax/QTDocuments/4228.PDF> |
| San Diego (CA) Police Department | STRmix (GlobalFiler, ABI 3500), STRmix v2.3.07; STRmix v2.4.06 <https://www.sandiego.gov/police/services/crime-laboratory-documents> |
| Washington DC Department of Forensic Sciences | STRmix v2.4 parameters & validation report (GlobalFiler, ABI 3500) <https://dfs.dc.gov/page/fbu-validation-studiesperformance-checks> |

*based on Google searches performed March 23, 2020

Validation summaries (not data) from:
- 8 laboratories
- 8 STRmix
- 1 TrueAllele
Steps involved in Processing an Evidence Sample containing DNA (either single-source or mixture)

- **Collection/Storage/Characterization**
- **Extraction/Quantitation**
- **Amplification/Marker Sets**
- **Separation/Detection**

Data → Stats → Report

Measurement
Gathering and Generating the Data

Interpretation
Understanding the Results

The output of the measurement steps is an electropherogram.

The output of interpretation is a reported result in a written report.

Electropherogram (EPG)

DNA profile from person of interest (POI) compared

Sample

Stats

Report

Written Report
AN IMPORTANT KEY TAKEAWAY: Generating a DNA profile involves measuring the inherent physical properties of the sample. Interpreting a DNA profile involves judgments made by the DNA analyst assigning values that are not inherent to the sample based on other factors including case context and their own training and experience.

“The origins of crime scene stains are not known with certainty, although these stains may match samples from specific people. The language of probability is designed to allow numerical statements about uncertainty, and we need to recognize that probabilities are assigned by people rather than being inherent physical quantities” (Evett & Weir 1998, p. 21, emphasis added).

For More Information, Come to ISFG 2021…

August 23-27, 2021
Washington, DC
International Society for Forensic Genetics (ISFG)

1393 members from 84 countries

- U.S.A. (15%)
- Germany (10%)
- Spain
- UK
- Australia
- Italy
- Poland
- Argentina
- Italy
- Spain
- UK
- Australia
- Italy
- Poland
- Argentina

12 Working Groups
- German
- English
- French
- Italian
- Spanish and Portuguese
- Chinese
- Korean
- Arabian Speaking
- CaDNAP
- DNA Commission
- EDNAP
- Polish

Biennial Meetings
- Prague (2019)

#1 Journal on Forensic DNA

President: John M. Butler, Gaithersburg • Vice President: Walther Parson, Innsbruck • Secretary: Peter M. Schneider, Cologne
Treasurer: Marielle Vennemann, Münster • Representative of the Working Groups: Leonor Gusmão, Rio de Janeiro

[https://www.isfg.org/files/ISFG_50Years_Brochure.pdf]
The Next ISFG Meeting is in the U.S.
https://www.isfg2021.org/

Once in a Lifetime Opportunity – The best scientific meeting in the field with top researchers in forensic genetics coming to the United States for the first time in the 21st Century

16 Pre-Congress Workshops
To be held August 23-24, 2021

DNA Mixtures (Basic)
DNA Mixtures (Advanced)
Kinship Analysis
Y-STRs
Court Testimony
NGS Bioinformatics 101

NGS Methods | mtDNA Casework
NGS STR Markers | Phenotyping
DNA Transfer | Evaluative Reporting
Probability and Statistics | Validation
Biogeographical Ancestry | Publication

https://www.isfg.org/Meeting

The 29th Congress of the International Society for Forensic Genetics

Thank you for your attention!

Points of view are the presenters and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Contact Information

John M. Butler
john.butler@nist.gov

Hari K. Iyer
hariharan.iyer@nist.gov