DNA Mass Spectrometry at NIST

Peter M. Vallone
Biotechnology Division, NIST
Bruker Daltonics Annual User Meeting
May 27, 2001

National Institute of Standards and Technology (NIST)

• Biotechnology Division: 5 groups
• DNA Technologies Group
  – Standard Reference Materials for Forensic DNA Labs
  – Quality Control Testing/Interlaboratory Tests
  – Multiplex PCR for Human Identity Testing
  – Development/Evaluation of New Technologies
Presentation Overview

- Methodologies for quality control testing DNA oligomers
  - Multiplex PCR primer mixtures
  - Sequencing short oligonucleotides

- Genotyping single nucleotide polymorphisms (SNPs)
  - Y chromosome SNPs
  - mitochondrial SNPs

- Evaluating genotyping chemistries
  - Primer extension
  - GOOD assay
  - Cleavable primer

Instrumentation

- Bruker BIFLEX III MALDI-TOF mass spectrometer (Bremen, Germany) capable of operation in both linear and reflector mode.

- Reverse phase-ion pairing HPLC (Transgenomic, San Jose, CA) was employed for the separation, concentration, and desalting of mixtures of nucleic acid oligomers.
Robotic Sample Preparation

- 96 well thermocycler on deck
- Plate Holder (4°C)
- Reagent holder (4°C)

600 μm Anchor Chip Plate

- 3 HPA Matrix Dried on Anchor Spot
**Multiplex PCR** *(Parallel Sample Processing)*

- Successful multiplexing depends on high quality oligonucleotides or “primers”
- Complex mixtures of primers need to be quality control tested

**Advantages of Multiplex PCR**

- Increases information obtained per unit time (increases power of discrimination)
- Reduces labor to obtain results
- Reduces template required (smaller sample consumed)

---

**Position of Forensic STR Markers on Human Chromosomes**

13 CODIS Core STR Loci

13 CODIS Core STR Loci

**Sex-typing**
Quality Control Testing of Multiplex PCR Primer Kits

• Reliable amplification of short tandem repeat (STR) DNA markers with the polymerase chain reaction (PCR) is dependent on high quality PCR primers.

• Particular primer combinations and concentrations are especially important with multiplex amplification reactions where multiple STR loci are simultaneously copied.

• Commercially available kits are now widely used for STR amplification and subsequent DNA typing.

• Use of HPLC and MALDI-TOF MS methods for characterization of commercially available STR kits.

Failure Sequences

Examples of automated synthesis failure and/or failed purification

Mass Spectrometry provides an independent means to probe oligonucleotide purity.

Impure Hex labeled primer provides the mass of the Hex dye

7513 – 6768 = 745 Da
Mass Spectrum of Multiplex Set of PCR Primers

12 of the 14 primers were resolved by MALDI-TOF MS

1 µL of 14 component PCR primer kit spotted in 1 µL 3HPA matrix

HPLC Separation of a Multiplex Set of 14 PCR Primers

Separation dependent on the properties of attached 5’ fluorescent dyes

2 µL injected onto DNASep® column run at 70 °C

Denaturing HPLC conditions allowed the separation of oligomers of varying length and sequence content

Solvent A: 0.1 M TEAA
Flow rate: 0.9 mL/min
Solvent B: 0.1 M TEAA-25% ACN
Gradient of 18%-50% B -40 min

Relative Intensity

Retention Time (min)
It is valuable to be able to perform quality assurance/quality control testing on DNA primers after mixtures have been prepared using only a small fraction of a much larger batch.

Applications such as multiplex PCR rely on high quality DNA primers.

Plots of mass versus retention time provide a quick and inexpensive means of quality controlling mixtures of DNA oligomers.

General Strategy for Sequencing Short DNA Oligonucleotide Mixtures

- Oligonucleotides are isolated and collected by HPLC
- The mass of each fraction is measured by MALDI-TOF MS
- Each fraction is subjected to exonuclease degradation and the products are analyzed by MALDI-TOF MS
- Resulting sequence information is tabulated and compared to a reference sequence
- The confirmation of sequence content/context is valuable for quality controlling large oligonucleotide mixtures
Exonuclease Digestions and Mass Analysis

- HPLC isolated DNA oligomers are subject to 5' and 3' acting exonucleases.
- Digestion reactions are analyzed by MALDI-TOF and the oligomer sequence is determined.
- The use of denaturing HPLC allows the sequencing of a relatively complex (up to ~32 components) mixture of DNA oligonucleotides.

- 5'-G-G-T-A-T-C-A-…-3'
- G-T-A-T-C-A-…-3'
- T-A-T-C-A-…-3'

5'-exonuclease (calf spleen phosphodiesterase)

- 5'-…-A-C-T-A-T-G-G-3'
- 5'-…-A-C-T-A-T-G
- 5'-…-A-C-T-A-T

3'-exonuclease (snake venom phosphodiesterase)

Results of Sequencing Solving Strategy

PowerPlex™ 16 kit
HPLC Fraction #11 (undigested)

Sequence received from Promega: ATTAGAATTCTTTAATCTGGACACAAG

Dr. Peter M. Vallone
Simultaneous Digest of 2 Oligonucleotides

Primers for the same locus but from different primer sets

Set A

SVP digests (3'-to-5')

- In this case primers (with identical sequences) have different fluorescent dyes attached
- MS of the parent peak alone is not enough information to ensure that the primer sequence has not been changed

Set C
• A MS profile of a multiplex PCR kit allows the unique mass of each primer to be measured

• This is a rapid and inexpensive method of quality controlling the kit by confirming that primers for a specific loci are present

• Sequencing of short DNA oligomers allows the user/community to confirm that primers remain consistent over time
  —Incorporation of a different fluorescent dye
  —Addition of mobility modifying linkers
  —Altering primer binding site

SNP Research Focus

• Evaluate SNP detection assays that can be analyzed by MALDI-TOF MS methods

• Genotype known SNP sites (we are not scanning or validating SNPs)

• Improve multiplex capabilities for MS based SNP detection

• Develop tools/protocols for high throughput genotyping
What is a Single Nucleotide Polymorphism?

• A single nucleotide polymorphism (SNP) is a single base variation in an otherwise conserved region of DNA
• SNPs are the most common type of DNA sequence variation and occur in ~1 of every 1000 bases in the human genome
• An SNP can be an insertion, deletion, or sequence variation

-TCTCATAATACGATAAAACAC-
-AGAGTATTATCCTATTTTGTG-

-TCTCATAATAGGATAAAACAC-
-AGAGTATTATCTATTTTGTG-

A G/C transversion highlighted in red for the M96 marker located on the Y-chromosome

The Significance of SNPs

• A key aspect of research in genetics is associating sequence variations with heritable phenotypes

• Because SNPs are expected to facilitate large-scale association genetics studies, there has recently been great interest in SNP discovery and detection
  • Disease association
  • Genetic mapping
  • Pharmacogenetics
  • Evolutionary studies
  • Human identification
    – Paternity testing
    – Forensic testing
3 Steps to Characterizing SNPs

• Discovery
• Validation
• **Genotyping (scoring) samples**

Technologies Used
• **Discovery** – sequence alignments or DHPLC
• **Validation** – resequencing or database searches
• **Genotyping (scoring) samples** – variety of technologies (single base extension or hybridization); MALDI-TOF mass spectrometry; capillary electrophoresis

Advantages of Mass Spectrometry for Genotyping SNPs

• **Accuracy**
  – internal standards are not required to correct mobility differences between runs as in electrophoretic systems

• **Speed**
  – separations may be performed hundreds of times faster than with electrophoretic systems because ions are in the gas phase
<table>
<thead>
<tr>
<th>Mitochondrial SNPs</th>
<th>Y Chromosome SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Human identification</td>
<td>• Human identification</td>
</tr>
<tr>
<td>• Control Region/D-loop highly polymorphic</td>
<td>• Defines genetic affinities between contemporary global populations</td>
</tr>
<tr>
<td>• 10plex already demonstrated</td>
<td>• Over 200 SNPs have been discovered</td>
</tr>
<tr>
<td>• Collaboration with the FBI to find candidate mtSNP markers</td>
<td>• Initial research already performed for multiplexing 5 Y SNP markers M9, M42, M45, M89, M96</td>
</tr>
<tr>
<td>• Assay design challenges: high GC content, insertions/deletions, closely spaced SNP sites</td>
<td></td>
</tr>
</tbody>
</table>
Y Chromosome SNPs

Haplogroups produced by Y SNP genotyping

M42

M96

M9

M89

M45

Primer Extension Assay

• PinPoint Assay
  Haff and Smirnov (1997) Genome Res 7:378-388

• A single primer 16-30 (bases) is designed to bind upstream/downstream from a known SNP site

• Mixture of ddNTPs and polymerase extend the primer by a single base

• The sequence identity of the extended base is the complement of the base at the SNP site
Steps in Primer Extension Assay

Select SNP site of interest and obtain DNA sequence
Design PCR primers and SNP extension primer
Perform PCR
Purification of PCR Template
Add SNP reagents and perform single base extension
Purification
Spot sample and perform mass spec analysis
Genotype based on mass difference measurement

Primer Extension Assay

Assay
SNP primer + ddNTPs
+ polymerase
DNA Template

Measurement
primer
extension product(s)

Δmass = base present
Depurination of primer

Sample A

Sample B

Δmass = 273 Da

Δmass = 313 Da

ddC

ddG

MS Data from Y SNP Marker M96

Bruker SNP Manager Genotyping Software

• Automated data collection (384)
• Automated data processing
• Searches for the expected mass of primer and extension product(s)
• Genotype determination w/ reliability

M9 (G/C) Y Chromosome Marker

\[ \Delta \text{mass} = 313 \text{ Da} \]

ddG

M42 (A/T) Y Chromosome Marker

\[ \Delta \text{mass} = 297 \text{ Da} \]

ddA
M45 (G/A) Y Chromosome Marker

\[ \Delta \text{mass} = 297 \text{ Da} \]

M89 (C/T) Y Chromosome Marker

Primer almost completely converted to extension product

\[ \Delta \text{mass} = 297 \text{ Da} \]
M9, M45, M89, and M96 Y Chromosome Markers Multiplexed

Two Adjacent Mitochondrial SNPs 16223 (C/T) and 16224 (A/G)
Challenges for Analysis of DNA by MALDI-TOF MS

- Non-uniform matrix crystallization leads to non-homogeneous sample spots; MS signal can thus vary across the sample ("sweet spots" exist). This can make automated data collection difficult.

- Sample salts affect resolution and sensitivity; a “clean up” step is required prior to MALDI analysis.

- Limited mass range with high accuracy and resolution (best below 10 kDa but works up to ~35 kDa). The limited mass range restricts multiplex designs.

- Salt adducts Na(+22) can interfere with accurate genotyping of heterozygous samples.

Advantages/Disadvantages of the Basic Primer Extension Assay

- Uses readily available reagents
  - Synthetic primers (no modifications)
  - ddNTPs
- Automation of liquid handling can be performed with robotics

- Limited multiplexing capabilities (~ 5plex)
- As mass range increases, resolution decreases
  - heterozygous samples difficult to resolve
- Salt adducts may interfere with data interpretation
  - products must be purified
- 3HPA matrix
  - non-homogeneous crystal formation
“GOOD” Assay

- Variation on Primer Extension Assay
- Uses a chemically modified primer
  - “Charge tag”
  - Phosphorothioate linkage
- Chromatography is not required for purification
- Alkylated/Charged tagged primer increases sensitivity in MALDI TOF MS by 100 fold

**SNP Detection by “Good” Assay**

- Mixed-backbone primer w/ Charge Tag
  - α-S-ddNTPs
  - Polymerase

- Primer extended w/ α-S-ddNTP
  - Primer digested w/ PDE
  - Primer alkylated

- Shorter primer = better resolution
- Charged primer = increased sensitivity
Phosphodiesters

Phosphorothioates

Methylphosphorothioates

α-S-ddNTP

Y SNP Marker M96 Probed by GOOD Assay

\[ \Delta m = 304 \rightarrow \alpha\text{-S-ddC} \]

\[ \Delta m = 344 \rightarrow \alpha\text{-S-ddG} \]

Relative Intensity

Heterozygous
Relative Intensity

\[ \Delta \text{mass} = 329 \text{ Da} \]

\[ \alpha^\text{-S-ddA} \text{ polymer} \]

**Advantages/Disadvantages of the “GOOD” Assay**

- 5plex has been shown
- Higher sensitivity facilitates data collection in automated mode
- Control of fragment mass with “Mass Tags”
- Lower mass primers fragment easier to ionize
- No salt adducts
- No chromatography required

- Requires specially modified synthetic primers
- Requires modified \( \alpha \)-S-ddNTPs
- Performing assay requires some skill/steps
- Automated in development lab
Primer Extension with Cleavable Primer

• GeneTrace Systems Inc.; US Patent 5,700,642

• Variation on the Primer Extension Assay

• A 5’ biotin labeled primer containing a cleavable base is used

• Streptavidin coated magnetic beads are employed for purification

Use of Cleavable Primer

B Primer w/ Cleavable Base

ddNTPs + polymerase

B = Biotin Phosphodiester Cleavable base

B Primer extended w/ ddNTP

Fragment for MS Analysis

Bead capture

Cleavage Reaction
DNA oligomer used in primer extension assay
Biotin – 5’ GGTTGATTGCTGTACTTGTTGTAAGCATGGGG 3’

mtSNP H16189 Probed Using a Cleavable Primer

Δm = 297→ ddA

mtSNP 7plex

Seven SNP sites located in the control region of mtDNA were probed by the extension assay and analyzed by MALDI-TOF MS
Advantages/Disadvantages of Using a Cleavable Primer

- Multiplexing (10plex has been shown)
- Control of fragment mass with cleavable base
- Reduced mass primer fragments are easier to ionize
- Better resolution (due to lower mass range)
- Only bead chromatography required

Future Directions

- Optimize automation of assays/data analysis for high throughput genotyping
- Perform comparisons with other technologies for SNP detection
- Increase multiplexing capabilities of SNP detection by MALDI-TOF MS
Acknowledgments

**Funding:**
National Institute of Justice Grant #97-LB-VX-0003

John Butler (NIST)

Jay Stoerker (Bruker Daltonics)
Thomas Froehlich (Bruker Daltonics)
Michael Marino (Transgenomic)
Joseph Devaney (Transgenomic)